рефераты рефераты
Главная страница > Дипломная работа: Релаксационная стойкость напряжений в металлах и сплавах  
Дипломная работа: Релаксационная стойкость напряжений в металлах и сплавах
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Релаксационная стойкость напряжений в металлах и сплавах

Продолжительность неустановившегося периода релаксации представляет существенный интерес, поскольку с этим связан практически важный вопрос о минимальной длительности опыта, достаточной для последующих экстраполяции. Изучение многочисленных первичных кривых релаксации показывает, что для стабильных при рабочей температуре материалов длительность начального периода обычно колеблется от 200 до 1000 ч. Одна­ко для сплавов, у которых в процессе службы структурные превращения протекают медленно, неустановившийся период может продолжаться значительно большие сроки.

В связи с этим время испытаний на релаксацию материалов, предназначенных для длительной службы, в наших лабораториях составляет 1000—3000 ч. Значительно реже испытания на релаксацию при повышенных температурах доводят до 10—20 тыс. ч (т. е. До фактического срока службы крепежных деталей), а при нормальной температуре — до 50 тыс. ч. Результаты опытов столь большой длительности представляют большую ценность для проверки правильности экстраполяции по результатам менее длительных испытаний.

 

3.3 Влияние температуры на процесс релаксации напряжений

Влияние температуры на процесс релаксации напряжений в металлах и сплавах весьма велико. Аналогично ползучести различают релаксацию напряжений при низких (меньше 0,25 ), средних (0,25 — 0,5) и высоких (более 0,5 ) температурах.

Механизмы релаксации напряжений (и ползучести) в указанных диапазонах температур различны. Так, доминирующим механизмом низкотемпературной релаксации является скольжение и пересечение дислокаций. Релаксации напряжений в среднетемпературной зоне опре­деляется пересечением дислокаций, преодолением дислокациями барьеров Пайерса и, главное, поперечным скольжением. Спецификой высокотемпературной релаксации являются диффузионные механизмы перемещения дислокаций, переползание дислокаций, движение винто­вых дислокаций, вязкое перемещение атмосфер Коттрелла.

Следует отметить, что перечисленные механизмы по-разному проявляются при кратковременной и длительной релаксации, а также в металлах с различной решеткой и в сплавах с различной степенью легирования. Именно в связи с этим для некоторых сплавов характерны немонотонные кривые зависимости сопротивления релаксации от температуры (в пределах до 0,25 ). Согласно кривой 1 рисунка 17, наблюдаются температурные области, в которых процессы релаксации и ползучести заторможены вследствие деформационного старения, образования предвыделений (зоны Гинье-Престона) и т.д. Иллюстрацией может служить реальная температурная кривая релаксации 4 для аустенитной стали типа Х18Н10Т при (τ0 = 350 МН/м2 (35 кг/мм2) и τ=24 ч (по данным Л.Б. Гецова).

Рисунок 17 - Зависимость = f(T)

В других случаях температурная зависимость сопротивления релаксации (ползучести) выражается монотонными кривыми 2 и 3, рисунок 17. Подобный вид кривых характерен для сплавов, у которых процессы деформационного старения либо вообще не наблюдаются (кривая 2), либо они протекают настолько интенсивно, что низкотемпературная релаксация (ползучесть) практически отсутствует (кривая 3).

Незначительная интенсивность релаксации напряжений в металлах при температурах ниже 0°С долгое время служила поводом для сомнений в ее существовании. Однако процессы релаксации напряжений действительно происходят при температурах ниже 0° С. Так, Фелтам изучил релаксацию в железе Армко, кобальте, меди, α-латуни и магниевом сплаве при температурах вплоть до -196°, С. В. Я. Зубов и С. В. Грачев в высокопрочной стали марок 70ХС и 70СЗХМВА при температуре -96° С, Б. А. Потехин и И. И. Богачев в аустенитной стали типа ЗХ10ГЮ также при -96° С.

Говоря о среднетемпературной области (0,25— 0,5) , следует отметить, что повышение температуры испытания сказывается на первичных кривых релаксации следующим образом: удлиняется I период релаксации и увеличивается угол наклона II (прямолинейного) участка. При дальнейшем повышении температуры (вы­ше 0,5 ) процесс релаксации вообще может ограничиться I периодом, что свидетельствует о полном релаксационном разупрочнении металла. Температура, вызывающая эту фазу релаксации, представляет известный интерес. Но с инженерной точки зрения большее значение имеет температура, отвечающая начальной стадии разупрочнения, когда начинается существенное спада­ние ах, но еще наблюдается вполне устойчивый II период релаксации.

Имеющиеся экспериментальные данные показывают, что разупрочнение чистых металлов, сталей и сплавов под воздействием температуры в условиях релаксации напряжений протекает значительно интенсивнее, чем в условиях ползучести.

Хотя температура начала релаксационного разупрочнения для сталей с интерметаллидной фазой примерно та же, что и при ползучести (~700°С), интенсивность протекания процесса релаксации напряжений с дальнейшим повышением температуры намного выше. В связи с этим возможность использования таких сталей при 750°С в качестве релаксационностойкого материала С длительным сроком службы практически отпадает.

Если считать, что ползучесть есть чередование двух противоположных процессов — разупрочнения под воздействием температуры и упрочнения от пластической деформации (наклеп), то отмеченное выше обстоятельство вполне объяснимо. В условиях релаксации напряжений (при неизменности начальной суммарной деформации) разупрочняющему действию температуры почти не противостоит упрочняющее влияние пластической деформации.

Я.С. Гинцбург [15] вводит понятие о критической температуре релаксации напряжений . По определению автора, это есть температура, при которой величина коэффициента , характеризующего сопротивляемость релаксации в I периоде, остается постоянной при любом значении . Такая формулировка достаточно неопределенна, тем более что при умеренно высоких температурах, как известно, начальное напряжение  вообще не влияет на величину.

Температурная зависимость различных характеристик релаксации изучалась многими исследователями. Так, Ф.И. Алешкин приводит температурную зависимость относительного напряжения релаксации =()100 («ресурс напряжений») в виде

= 100[()] (58)

где с и d— коэффициенты.

Л.П. Никитина исследовала температурную зависимость времени релаксации , необходимого для достижения определенного уровня относительного напряжения . Влияние на процесс релаксации трех основных параметров: напряжения, температуры и времени тесно связано между собой.

Поэтому естественно стремление исследователей представить зависимость экспериментальных данных одновременно от всех перечисленных параметров, например = f(t, , τ).

Кривые для различной длительности испытаний, полученные при каждом зна­чении , образуют пучок, расходящийся в направлении высоких температур. Последнее обстоятельство подтверждает, что с повышением температуры влияние времени на релаксационную стойкость усиливается. Пучки кривых для различных в области высоких температур, наоборот, сближаются, что говорит об уменьшении влияния  с температурой.

 

3.4 Масштабный фактор

Исследование влияния размеров образца (детали) на интенсивность процессов релаксации напряжений отражено в весьма ограниченном числе работ. Опыты Одинга и Бурдукского приводились при 600° С в условиях растяжения образцов различной длины (50 и 100 мм) и диаметра (5 и 10 мм), изготовленных из сталей Х18Н12МЗТ, Х18Н10Т и 4Х15Н7Г7ФМ (ЭИ388).

Результаты испытаний усредняли методом наименьших квадратов. При этом обнаружилось некоторое сни­жение релаксационной стойкости образцов меньших размеров. Было сделано предположение, что различная релаксационная стойкость образцов разных размеров связана с локальным характером протекания малых пластических деформаций при высоких температурах.

Для подтверждения этого проводили специальные опыты с образцами, на поверхности рабочей части которых через каждые 10 мм наносили отпечатки прибором Виккерса. Расстояние между отпечатками измеряли с большой точностью до и после испытания на релаксацию.

На рисунке 18 приведен график распределения пластической деформации по длине образца из стали Х18Н12МЗТ, испытывавшегося при 600° С в течение 500 ч. Из рисунка 18 следует, что в условиях релаксации наблюдается значительный разброс слабых и прочных объемов по длине и, по-видимому, по сечению образца. Отсюда следует, что в образцах сравнительно большого диаметра (длины) сопротивляемость релаксации должна быть усреднена по отдельным объемам. Вместе с тем в тонких и особенно в коротких образцах усреднение распределения слабых и прочных объемов затруднено. Поэтому в первом случае кривые релаксации устойчивы, во втором наблюдается их значительный разброс. Кроме того, локальность пластической деформации может привести в ряде случаев к некоторому снижению релаксационной стойкости образцов малых размеров, так как вероятность скопления слабых объемов по сечению образца в количестве, достаточном для его разупрочнения, у тонких образцов значительно больше, чем у образцов большого диаметра. В то же время у образцов малого диаметра эта вероятность тем больше, чем больше длина образца.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

рефераты
Новости