рефераты рефераты
Главная страница > Дипломная работа: Релаксационная стойкость напряжений в металлах и сплавах  
Дипломная работа: Релаксационная стойкость напряжений в металлах и сплавах
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Релаксационная стойкость напряжений в металлах и сплавах

Было установлено также, что форма поперечного сечения, в том числе и наличие резьбы на поверхности, не оказывают заметного влияния на релаксационную стойкость.

Таким образом, проведенные исследования не позволяют сделать однозначных выводов о влиянии масштаб­ного фактора на релаксационную стойкость различных материалов. По-видимому, аналогично ползучести, масштабный фактор может проявиться в результате:

а) неоднородного распределения сопротивления ползучести в разных микрообъемах, по-разному проявляющегося в образцах разных размеров;

б) различного влияния состояния поверхности образцов разных размеров (влияние наклепа, окисления);

в) облегчения выхода дислокаций на поверхность при увеличении отношения поверхности к объему.

Различные выводы исследователей объясняются не только проявлением масштабного фактора при релаксации в условиях сжатия и растяжения, но и особенностями поведения в этих условиях испытанных материалов (медь, перлитная и аустенитная стали).


Рисунок 18 — График распределения пластической деформации при релаксации напряжений

 

3.5 Основные критерии релаксации напряжений

Для оценки релаксационной стойкости материалов служат следующие критерии: оставшееся напряжение; падение напряжения; ресурс напряжений; скорость релаксации; предел релаксации; условные коэффициенты релаксации.

Оставшееся напряжение. Напряжение  “оставшееся” в детали или испытуемом образце по истечении некоторого промежутка времени от момента нагружения детали (образца) начальным напряжением , наиболее часто используется в качестве численной характеристики релаксационной стойкости металлов и сплавов. Несмотря на это, до сих пор нет единого термина для обозначения . Помимо оставшегося напряжения, величину  назы­вают остаточным, текущим и конечным напряжениями или же просто напряжением релаксации.

Термин остаточное напряжение неизбежно приведет к путанице с укоренившимися понятиями остаточных на­пряжений 1-го и 2-го рода. Термин текущее напряжение неудачен в смысловом отношении и, кроме того, вызывает ассоциации с пределом текучести. Наконец, напряжение бывает конечным не всегда, а лишь в том случае, когда оно совпадает с окончанием испытания или срока эксплуатации. По этим соображениям, мы придерживаемся термина оставшееся напряжение, который представляется наиболее удачным.

Величина  за данный период времени τ зависит от начального напряжения: =f(). Приводя численные значения , необходимо указывать, при каком именно  они были получены, что, к сожалению, не всегда выполняется.

Основное преимущество оставшегося напряжения как критерия релаксации заключается в том, что величина  получается непосредственно из эксперимента и не требует дополнительной математической обработки.

Падение напряжения за обусловленный промежуток времени τ () наряду с оставшимся напряжением  можно считать основным критерием релаксационной стойкости, применявшимся еще в ранний период изучения процесса релаксации. Так же как и , величина  является функцией начального напряжения: = f().

Косвенной характеристикой релаксации, в принципе аналогичной , можно считать величину осадки цилиндрической спиральной пружины под воздействием сжимающего усилия. Как известно, такая методика испытания широко применяется для оценки релаксационной стойкости пружинных сталей и сплавов.

Вместе с тем величина  и  для данного времени τ недостаточно полно характеризуют сравнительную сопротивляемость релаксации исследуемых материалов, поскольку они не отражают ни предыдущего, ни дальнейшего протекания процесса релаксации. Для суждения о кинетике спадания напряжений необходимо знать  или  за различные промежутки времени, составляющие 0,05; 0,1; 0,2; 0,5 от полного времени испытания или заданного срока службы.

Ресурс напряжений. В ряде случаев снижение напряжения в процессе релаксации удобно представлять в относительных значениях от начального напряжения. Относительная величина оставшихся напряжений, выраженная в процентах, получила название «ресурса напряжений»:

 (59)

Скорость релаксации. Различают «истинную», «среднюю» и «логарифмическую» скорости релаксации.

Истинную (или «мгновенную») скорость релаксации в любой точке кривой напряжение — время

 (60)

 

практически не определяют. Обычно подсчитывают среднюю скорость релаксации () за некоторый промежуток времени, ограниченный двумя точками ( и ) на первичной кривой релаксации;

 (61)

Величину  измеряют в единицах напряжения, отнесенных к единице времени, или в процентах в час.

Логарифмическая скорость релаксации определяется уравнением

 (62)

и выражается в величинах или  Величина, обратная k:

 (63)

под названием «время релаксации» ранее также применялась в качестве характеристики релаксации.

И.А. Одинг и Ф.И. Алешкин установили на железе Армко прямолинейную (в логарифмической системе координат) зависимость скорости релаксации  от времени испытания. Температурная зависимость  выра­жена на логарифмическом графике ломаной линией.

Предел релаксации. Этот термин применяют, по крайней мере, в трех вариантах: истинный (физический) предел релаксации напряжений; условное напряжение для заданной скорости релаксации; условный (технический) предел релаксации (по напряжению).

Под истинным (физическим, теоретическим) пределом релаксации напряжений по аналогии с физическим пределом ползучести понимают максимальное начальное напряжение, еще не вызывающее релаксации. Эта характеристика практически не применяется, и существование физического предела релаксации пока не имеет достаточного экспериментального подтверждения.


4 Влияние термомеханической обработки на релаксационную стойкость сталей и сплавов

Релаксационная стойкость сплавов зависит не только от химического состава, но и от их структуры. Можно отметить общие для всех типов сплавов особенности структурного состояния, которые (прямо или косвенно) влияют на процесс релаксации напряжений при обычной и повышенной температурах. Сюда относятся: величина зерна твердого раствора, его стабильность, количество и размеры частиц избыточных фаз, их взаиморасположение и взаимодействие. Перечисленные структурные факторы регулируются термической обработкой.

Вместе с тем следует учитывать, что длительное пребывание сплава при повышенных температурах может существенно изменить исходное структурное состояние, созданное термической обработкой.

4.1 Положительное влияние ТМО на релаксационную стойкость

Термомеханическая обработка металлов и сплавов, представляющая собой сочетание пластического деформирования (наклепа) и термической обработки, является прогрессивным технологическим процессом, позволяющим повышать уровень механических свойств стали и других сплавов, в том числе и жаропрочных.

Возможность упрочнения металлических сплавов сочетанием механического и фазового наклепа отмечалась еще в 1943 г. в теоретических работах С.Т. Конобеевского. Реальная возможность применения термомеханической обработки для повышения жаропрочных свойств впервые показана В.Д. Садовским с сотрудниками. В дальнейшем было проведено значительное число экспериментальных исследований, исчерпывающий обзор которых можно найти в труде М. Л. Бернштейна [14].

Многочисленные способы такой обработки могут быть отнесены к трем основным видам: НТМО (низкотемпературная термомеханическая обработка), ВТМО (высокотемпературная термомеханическая обработка) и МТО (механико-термическая обработка).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

рефераты
Новости