рефераты рефераты
Главная страница > Дипломная работа: Релаксационная стойкость напряжений в металлах и сплавах  
Дипломная работа: Релаксационная стойкость напряжений в металлах и сплавах
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Релаксационная стойкость напряжений в металлах и сплавах

 (54)

где  — высота пружины, разгруженной в момент времени τ, в свободном состоянии.

Для измерения упругой осадки пружины применяют специальные приспособления с электрощупом, позволяющие производить замеры с точностью до ±0,01 мм.

Следует отметить, что при испытании пружин, так же как и при испытаниях на изгиб, нагружение производят лишь в упругой области.

Для уменьшения интенсивно развивающихся процессов релаксации напряжений непосредственно при их нагружении в ряде случаев применяют технологическую операцию, называемую «заневоливанием», состоящую в следующем. Изготовленную пружину сжимают до соприкосновения витков и длительно выдерживают в таком состоянии. Процесс заневоливания пружин считается за­конченным, когда скорость течения релаксационных процессов становится постоянной.

Для изучения закономерностей релаксации напряжений в пружинах сжатия при их заневоливании сконструирована специальная установка (рисунок 13), позволяющая проводить испытания при комнатной и повы­шенных температурах с автоматической записью кривых релаксации.

Установка состоит из нагружающего устройства, печи, весов и фотореле. Пружину 3 устанавливают на подставку, затем через нее продевают тягу 4. Домкрат 9 служит для подъема и опускания подвески 16, на которой устанавливают гири 5 и гидрогирю 6, при нагружении и разгружении пружины. Когда подвеска освобождается от домкрата 9 и вся нагрузка сосредоточивается на пружине 3, щель фотоэлемента устанавливается в тени флажка 15, и включается фотореле 19. При падении несущей способности пружины она сжимается и флажок, прикрепленный к стрелке индикаторной головки 1, открывает щель фотоэлемента, вследствие чего включается реле, замыкающее цепь электромагнитного пережима 8, открывается сифон 7 для откачки воды из гидрогири 6. Откачиваемая вода попадает в ведро 10 весоизмерителя 13 и ее масса, соответствующая падению нагрузки пружины во времени, регистрируется записывающим устройством 18.

В последние годы Чижиком А.А. разработан метод испытания на релаксацию металла натурных пароперегревательных труб. Испытания проводят в условиях сжатия на специальных пружинных образцах с прямоугольным сечением витка рисунок 14. Применительно к условиям получения достаточной точности испытаний и предупреждения потери устойчивости для труб диаметрами 25—75 мм установлены оптимальные размеры пружинного образца: длина 40, шаг спирали 8 мм. Образцы обычно изготовляют фрезерованием и каждый образец подвергают тарировке, состоящей в определении усилия, необходимого для осадки образца до высоты, соответствующей длине калибра. В результате тарировки опреде­ляют жесткость образца , где Р — приложенное усилие; δ— соответствующая этому усилию линейная деформация образца.

Начальную осадку образца  определяют по формуле

 (55)

где  — условное начальное напряжение;  и  — модули упругости при 20° С и температуре испытания t; 2а — ширина сечения витка; 2b — высота; k2 — константа, зависящая от отношения b/a.

Пружины испытывают в специальных приспособлениях (рисунок 14). Величина  создается затягом двумя опорными гайками и фиксируется фиксирующими втул­ками высотой , где H — высота образца. Этот метод испытаний, так же как и испытания с кольцевыми образцами Одинга, является массовым: испытывается по 15—20 образцом.

1— индикаторная головка; 2— термопара; 3 — испытуемая пружина; 4 — тяга; 5 —гиря; 6 — гидрогиря; 7 — резиновая трубка; 8 — электромаг­нитный пережим; 9 — домкрат; 10 —ведро; 11 — ось электрочасов; 12 — указывающая и записывающая стрелки; 13 — весоизмерительная пружина; 14 — потенциометр ЭМД-237; 15—стрелка-флажок; 16 — грузовая подвеска; 17 — стол установки; 18 — записывающие барабанные электрочасы; 19— фо­тореле; 20 — электропечь

Рисунок 13 - Схема автоматической установки для измерения релак­сации напряжения в пружинах сжатия.


1 — опорные гайки; 2 — фиксирующие втулки; 3 — стержень; 4 — образец

Рисунок 14 - Образец (а) и приспособление (б) для массовых испытаний пароперегревательных труб на ползучесть и релаксацию напряжений.


3 Влияние различных факторов на процесс релаксации напряжений и ее критерии

Факторы, влияющие на протекание процесса релаксации напряжений, можно разделить на внутренние — зависящие от испытуемого материала и внешние — от него не зависящие.

К числу внутренних факторов относятся: химический состава сплава; структура: макро- и микроструктура, тонкая (мозаичная и дислокационная) структура; технологические особенности: способ выплавки, обработка давлением, наклеп, термическая обработка.

К главным внешним факторам относятся: условия нагружения и разгружения; начальное напряжение; время (срок службы детали); температура; масштабный фактор.

 

3.1 Влияние начального напряжения на протекание процесса релаксации

Начальное напряжение  оказывает существенное влияние на протекание процесса релаксации, а следова­тельно, и на величину напряжений , «оставшихся» через различные промежутки времени. При этом влияние  в I и II периодах релаксации имеет свои особенности.

1 — 200(20); 2 —250(25); 3 — 300(30); 4 — 400(40)

Рисунок 15 — Первичные кривые релаксации жаропрочного никельхромового сплава при 750° С и различных значениях, МН/м2.

Принято считать, что с повышением величины σ0 процесс релаксации напряжений в начальном периоде интенсифицируется и тем заметнее, чем выше гомологическая температура. Анализ начальных участков большого числа первичных кривых релаксации показывает, что влияние начального напряжения сказывается не столько на абсолютной величине падения напряжения , сколько на скорости снижения напряжения, что видно, например, из рисунка 15. Однако взаимное расположение кривых σ—τ, получаемое при различных значениях, на первом этапе процесса релаксации не всегда соответствует начальным напряжениям, при которых они получены.

Если задаться некоторой величиной, то при различных значениях она будет достигнута через различные промежутки времени τ. Чем выше, тем короче время, необходимое для достижения заданной величины , и наоборот, хотя здесь нельзя установить строгой пропорциональности.

Иная картина наблюдается во II периоде, когда процесс релаксации идет с более или менее установившейся скоростью. Здесь влияние  на интенсивность релаксации напряжения практически отсутствует, во всяком случае, при температурах ниже 0,5 Тпл. Скорости релаксации при разных значениях , как правило, весьма близки. Кривые σ—τ на втором участке подобны и эквидистантны, отличаясь лишь по взаимоположению относительно оси ординат, т. е. по уровню оставшихся в данный момент времени напряжений. Это хорошо иллюстрируется приведенным на рисунке 15 семейством первичных кривых релаксации жаропрочного никельхромового сплава при четырех значениях.

При более высоких температурах (>0,5 ) первичные кривые σ—τ часто утрачивают подобие, и скорости релаксации при разных значениях сто становятся непостоянными.

Зависимость оставшегося (конечного) напряжения от начального определяется влиянием последнего на протекание процесса релаксации в обоих периодах. При температурах, не превышающих 0,5, степень увеличения интенсивности процесса релаксации в I периоде за счет повышения величины  (в пределах до 0,8) обычно такова, что в конечном счете более высокое начальное напряжение приводит к более высокому оставшемуся напряжению.

Взаимосвязь начального и оставшегося (конечного) напряжений (или начального напряжения и падения напряжения ) наиболее наглядно представлена графиками и рисунок16. Такие кривые строят для переменных значений времени релаксации τ (либо температуры t). При t=const, const эта зависимость изображается пучком расходящихся прямых для разных значений τ, проходящих через нулевую точку осей координат рисунка 16.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

рефераты
Новости