рефераты рефераты
Главная страница > Реферат: Елементи дисперсійного аналізу і теорії кореляції  
Реферат: Елементи дисперсійного аналізу і теорії кореляції
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Елементи дисперсійного аналізу і теорії кореляції

Повну суму квадратів відхилень усіх значень від загальної середньої, при обчисленні якої спільно врахуються факторна та випадкова компоненти, можна розкласти на суму двох складових, що подають ці фактори роздільно

                                   (5)

Для перетворення цих сум у відповідні дисперсії необхідно їх поділити на відповідні кількості ступенів волі, результати чого представлено в табл. 2, яку називають таблицею однофакторного дисперсійного аналізу.

Таблица 2

Компонента Сума квадратів Число ступенів волі

Дисперсія

Факторна

 (6)

Залишкова

 (7)

Повна

Для того, щоб перевірити тепер нульову гіпотезу про рівність математичних сподівань за рівнями фактора  (3), необхідно за критерієм Фішера порівняти факторну  (6) і залишкову дисперсії  (7).

Для цього проведемо розрахунок статистики критерію

і порівняємо її з критичною точкою при рівні значущості  і таких ступенях волі

,

Якщо

то нульову гіпотезу приймають, тобто при заданому рівні значущості  приймають рішення про те, що вплив фактора  можна вважати несуттєвим.

Якщо


то вплив фактора  визнають значимим.

Отже, метод дисперсійного аналізу складається в перевірці нульової гіпотези про рівність групових середніх нормальних сукупностей з однаковими дисперсіями. Для цього досить перевірити за критерієм  нульову гіпотезу про рівність факторної і залишкової дисперсій.


2 Поняття про кореляцію і регресію

Оцінка залежності між випадковими величинами та поява можливості прогнозувати при цьому значення однієї випадкової величини за значеннями іншої випадкової величини є важливою проблемою статистичного аналізу.

2.1 Функціональна, статистична і кореляційна залежності

Дві випадкові величини можуть бути незалежними або пов'язаними між собою визначеною функціональною залежністю, або залежністю особливого типу, що називається статистичною (стохастичною).

Статистичною називають залежність, при якій зміна однієї з випадкових величин спричиняє зміну розподілу іншої випадкової величини. Статистична залежність виявляється зокрема в тому, що при зміні однієї з величин змінюється середнє значення іншої; при цьому статистичну залежність називають кореляційною.

Прикладом такої кореляційної залежності є зв'язок між внесеними в землю добривами і отриманим врожаєм зерна. Відомо, що твердого функціонального зв'язку між цими величинами немає у зв'язку з впливом безлічі випадкових факторів (опади, температура повітря й ін.). Однак досвід свідчить, що зміна кількості внесених добрив змінює середню врожайність.

2.2 Умовне математичне сподівання, коефіцієнт кореляції і регресія двовимірної випадкової величини в теорії ймовірностей

У теорії ймовірностей при описі системи двох випадкових величин  і  було введено поняття умовного математичного сподівання (регресії) для дискретних і для неперервних випадкових величин, відповідно


де  – визначене можливе значення випадкової величини ;  ( ) – можливі значення величини ;  – відповідні умовні ймовірності;  – умовна щільність ймовірності випадкової величини  при ;  – функція регресії  на

                                                                                (8)

– рівняння регресії  на .

Аналогічно визначаються умовне математичне сподівання випадкової величини  і функція, а також рівняння регресії  на :

                                                                               (9)

Функції  і  (рівняння регресії), що уявляють інтерес, у загальному випадку невідомі, тому їх шукають у наближеному вигляді, причому звичайно обмежуються лінійним наближенням:

                                                                            (10)

Страницы: 1, 2, 3, 4, 5, 6

рефераты
Новости