рефераты рефераты
Главная страница > Контрольная работа: Линейные регрессионные модели  
Контрольная работа: Линейные регрессионные модели
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Контрольная работа: Линейные регрессионные модели

Проверяем случайность остатков. Согласно предпосылкам МНК возмущение должно быть случайной величиной с нулевым математическим ожиданием. Это имеет место для получения однофакторной регрессии. График остатка (возмущения, ошибки) располагается в горизонтальной полосе. Имеется большое количество локальных экстремумов (максимумов и минимумов). -значит остатки случайные.

Согласно следующей предпосылке остатки должны быть равно изменчивы. Для проверки этой предпосылки используем в Microsoft Excel инструмент "Среднее значение".

 

-0,0000000000000026.

Проверка на гомоскедастичность по методу Гольдфельда-Квандта невозможна, так как недостаточно наблюдений (должно быть n>12m) /

Проверим отсутствие автокорреляции остатков. Для этого чаще всего используют критерий Дарбина Уотсона (d-критерий):

.

находится в Microsoft Excel при помощи инструмента "СУММКВРАЗН"

=29,573

, берется из таблицы 4.1 "SS"/ "остаток"

14,374

d=.


Критерий Дарбина Уотсона (d-критерий): n=12, m=1, , dl=0,97,du=1,33

             I     dl     II  du    III         IV 4-du   V  4-dl        VI           

      0         0,97      1,33        2         2,67       3,03          4

d=2,057III, IV. Значит нет оснований отклонить предположение об отсутствии автокорреляции соседних остатков по d-критерию с уровнем значимости . Следующее необходимое условие: остатки должны иметь распределение Гаусса. можно ограничиться критерием размахов (RS - критерий).

.

-стандартная ошибка модели

=1,263784889.

находится в Microsoft Excel при помощи функции "МАКС".

=.2,280183127

 находится в Microsoft Excel при помощи функции "МИН".

=-1,790955196

RS=3,22138

Критерий размахов, RS - критерий: n=12, α =0,05, a=2,8, b=3,91.

Если a <RS < b, то остатки имеют нормальный закон распределения с уровнем α =0,05.

2,8 <3,22138 < 3,91.


Вывод: Все предпосылки регрессионного анализа выполняются с уровнем α =0,05. Значит модель успешно прошла проверку оценки ее качества.

3. Предложить модели тренда изучаемого показателя. Оценить качество моделей

Линейный тренд у показателя связан с ситуацией, когда наибольшим является коэффициент автокорреляции первого порядка.

>0,7, при это , где a,bR.

При выборе модели тренда нельзя выбирать функцию тренда с числом параметров при факторе время больше шестой части n, то есть m>.

Существует несколько видов тренда (линейный, полиномиальный, степенной, логарифмический, гиперболический). Из них необходимо выбрать наилучший вид тренда.

Построим графики основных типов тренда. Для выявления наилучшего уравнения тренда определим параметры трендов. Результаты расчетов представим в таблице 9. Согласно, данным этой таблицы наилучшей моделью тренда является полиномиальный тренд, для которого значение коэффициента детерминации наиболее высокое.


График 3. Линейный тренд.

График 4. Полиномиальный тренд.

График 5. Степенной тренд.


График 6. Экспоненциальный тренд.

 

Таблица 9.

Тип тренда Уравнение

Линейный

0,0016
Полиномиальный

0,1371
Степенной

0,0125
Экспоненциальный

0,0016

Итак, рассмотрим модель тренда. Но у показателя Y явно нет никакой тенденции (тренда), так как для  =0.1371<0,3. Модель неудачна.

4. Используя значимые в целом и по параметрам модели (с приемлемым уровнем значимости), для которых выполняются все предпосылки метода наименьших квадратов (свойств остатков), получит прогнозы изучаемого показателя на два следующих месяца.

Модели ,  значимы в целом и по параметрам и для них выполняются все предпосылки МНК. По этим моделям можно строить прогнозы изучаемого показателя. Различают точечный и доверительный прогнозы показателя. Точечный прогноз получают путем подстановки в уравнение регрессии значения фактора x, и он имеет нулевую вероятность. Этот прогноз полезен при формировании доверительного прогноза.

Пусть в модели  Х5 в последующих два будет увеличиваться на столько на сколько и в прошлом месяце 1,7% (в% к предыдущему периоду). Значит Х5 в следующем периоде уменьшится на 1%.

1,017*101,69103,41

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

рефераты
Новости