рефераты рефераты
Главная страница > Контрольная работа: Линейные регрессионные модели  
Контрольная работа: Линейные регрессионные модели
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Контрольная работа: Линейные регрессионные модели

 

Проверяем случайность остатков Первое, что требуется, это чтобы график остатков располагался в горизонтальной полосе, симметричной относительно оси абсцисс. Согласно предпосылкам МНК возмущение должно быть случайной величиной с нулевым математическим ожиданием. Это имеет место для получения однофакторной регрессии. График остатка (возмущения, ошибки) располагается в горизонтальной полосе. Имеется большое количество локальных экстремумов (максимумов и минимумов). -значит остатки случайные.

Согласно следующей предпосылке остатки должны быть равноизменчивы. Для проверки этой предпосылки используем в Microsoft Excel инструмент "Среднее значение".

 

-0,000000000000006.

Проверка на гомоскедастичность по методу Гольдфельда-Квандта невозможна, так как недостаточно наблюдений (должно быть n>12m) /

Проверим отсутствие автокорреляции остатков. Для этого чаще всего используют критерий Дарбина Уотсона (d-критерий):

.

находится в Microsoft Excel при помощи инструмента "СУММКВРАЗН"

=3,215

, берется из таблицы 4.1 "SS"/ "остаток"

1,785

d=.

Критерий Дарбина Уотсона (d-критерий): n=12, m=1, , dl=0,97,du=1,33

             I     dl     II  du    III         IV 4-du   V  4-dl        VI           

      0         0,97      1,33        2         2,67       3,03          4

d=1,801III, IV. Значит нет оснований отклонить предположение об отсутствии автокорреляции соседних остатков по d-критерию с уровнем значимости .

Следующее необходимое условие: остатки должны иметь распределение Гаусса. можно ограничиться критерием размахов (RS - критерий).

.

-стандартная ошибка модели

=0,445346.

находится в Microsoft Excel при помощи функции "МАКС".

=1,15.

 находится в Microsoft Excel при помощи функции "МИН".

=-0,45.

RS=3,59

Критерий размахов, RS - критерий: n=12, α =0,05, a=2,8, b=3,91.

Если a <RS < b, то остатки имеют нормальный закон распределения с уровнем α =0,05.

2,8 <3,59 < 3,91.

Вывод: Все предпосылки регрессионного анализа выполняются с уровнем α =0,05. Значит модель успешно прошла проверку оценки ее качества.

Используя инструмент РЕГРЕССИЯ, оценим 3 модель.

1 этап. Оценка значимости модели в целом.

Таблица 7.

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R 0,863178866
R-квадрат 0,745077754
Нормированный R-квадрат 0,71675306
Стандартная ошибка 1,263784889
Наблюдения 11
Дисперсионный анализ

 

df

SS

MS

F

Значимость F

Регрессия 1 42,01290252 42,0129 26,30488273 0,000620555
Остаток 9 14,37437021 1,597152
Итого 10 56,38727273      

Модель линейной регрессии с фактором X5 значима в целом согласно F-критерию (F=26,304) с приемлемым уровнем значимости 0,0000000468 ≤ 0,05

Итак, получаем модель

 

Коэф-ты

Станд. ошибка

t-стат.

P-Значение

Нижние 95%

Y-пересечение 55,68196551 8,991138974 6, 192982 0,00016021 35,34258057
Х5 0,453226954 0,088368512 5,128829 0,000620555 0,253323338

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

рефераты
Новости