рефераты рефераты
Главная страница > Курсовая работа: Разработка системы регулирования температуры смазочного масла турбины  
Курсовая работа: Разработка системы регулирования температуры смазочного масла турбины
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Разработка системы регулирования температуры смазочного масла турбины

5. Вычисляется новый вектор  по формуле (3.16)

Обычно для промышленных объектов характерна коррелированность во времени шумов, действующих на объект. Использование обычного МНК при таком шуме, т. е. при минимизации выражения (3.11), вызывает смещение оценок параметров, увеличение дисперсии этих оценок. Ухудшение этих оценок, в свою очередь, приводит к ухудшению свойств оценок переменных состояния х(k) и в итоге к снижению качества управления.

Для получения несмещенных оценок используется обобщенный МНК (ОМНК).

При использовании ОМНК оцениваются параметры моделей объекта и шума на его выходе. Идентификации подвергается модель максимального правдоподобия (МП - модель) для которой связь между переменными задается уравнением

.                    (3.18)

Вводя расширенные векторы данных

 (3.19)

и параметров

,                               (3.20)

выход ной сигнал объекта можно записать через (5.13) и (5.14)

.                               (3.21)

Так как сигнал помехи е(к) неизвестен, то используется его оценка , определяемая из уравнения


.                               (3.22)

Оценки параметров МП - модели вычисляются аналогично как в МНК по формулам (3.15) – (3.17).

На рис. 3.3. -3 показаны результаты идентификации.

Рис. 3.3. Коэффициенты АРСС – модели объекта.

Рис. 3.4. Выходные сигналы объекта и модели.

Рис. 3.4. Ошибка идентификации.


Рис. 3.5. Корреляционная функция ошибки идентификации.

Рис. 3.5. Спектральная плотность ошибки идентификации.

Рис. 3.6. Гистограмм ошибки идентификации.


4.  Расчет характеристик математической модели объекта управления

 

4.1 Математические модели в пространстве состояний

Математическая модель (образ) представляет собой абстрактное отражение реального объекта (оригинала, прообраза). В зависимости от типа объекта и целей, ради которых строится и используется модель, формальное описание может быть различным. Для моделирования объектов могут быть использованы структурные схемы, операторные уравнения, алгебраические уравнения, дифференциальные, интегральные и интегро-дифференциальные уравнения, Марковские цепи, передаточные функции, частотные характеристики, весовые функции, графы и т. д. Все эти методы функционально связывают входные и выходные сигналы объекта. По количеству входов и выходов объекты и соответствующие им модели разделяют на одномерные и многомерные. Одномерными называют объекты, имеющие один вход и один выход, многомерными – объекты, имеющие несколько входов и выходов, причем число входов не обязательно равно числу выходов. Блок-схемы одномерного и многомерного объектов изображены соответственно на рис. 4.1,а и рис. 4.1,б. Причем число входов не обязательно равно числу выходов.

Рис. 4.1.


Наиболее полно идентифицируемый объект описывается в терминах пространства состояний. Под состоянием объекта понимается совокупность величин xi, полностью определяющих его положение в данный момент времени.

Наиболее употребительной моделью динамических объектов являются дифференциальные уравнения. Будем рассматривать только объекты с сосредоточенными параметрами, которые описываются обыкновенными дифференциальными уравнениями. Порядок системы дифференциальных уравнений, описывающей модель объекта, непосредственно не определяется количеством входов и выходов, а зависит от операторов, преобразующих входные сигналы в выходные.

Для динамических систем, в которых физические процессы протекают непрерывно во времени, скорости изменения переменной состояния объекта можно также задать вектором

,                 (4.1)

где ,  – скорости изменения компонент многомерной переменной состояния.

В свою очередь эти скорости определяются текущими значениями переменной состояния , управлениями  и возмущениями , действующими на объект

,                    (4.2)

где g = (g1, ..., gn)T – вектор функция; x10 , x20. .., xn0 – начальные условия.

Если g( ) – нелинейная функция, то решение уравнения (4.2) усложняется, так как сводится к интегрированию системы нелинейных ДУ. Так как методы интегрирования систем ДУ хорошо разработаны только для линейных систем, то перед работой с ними необходимо линеаризовать g( ) в окрестности рабочей точки, которой соответствует установившейся режим работы объекта.

Для линеаризованной функции g( ) ДУ вида (4.2) с учетом воздействия среды можно представить в векторной форме:

,                     (4.3)

где A(t); B(t); E(t) – матрицы преобразования, элементы которых в общем случае являются функциями времени.

Элементы xi в уравнении (4.3) называются переменными состояния объекта или фазовыми координатами. Переменные состояния (фазовые координаты) образуют вектор состояния, переменные управления  и возмущения  образуют векторы управления и возмущения. Множество этих векторов составляет пространство состояний (фазовое пространство) X, пространство управлений U и возмущений F.

Во многих физических объектах регулируются, измеряются и передаются по информационным каналам не значения вектора состояния , а другие значения – функции составляющих вектора фазовых координат, называемые управляемыми или выходными величинами. Обозначим измеряемые величины через y1(t), y2(t),..., ys(t), причем обычно s £ n. Тогда уравнение измерения, связывающее регулируемые и фазовые координаты объекта примет вид

.                                            (4.4)


Для линейного объекта это соотношение линейное:

.                                          (4.5)

Матрица С(t) называется матрицей измерения. Она показывает, как изменяются значения вектора состояний при измерении. При измерениях, описываемых выражениями (4.4) и (4.5), вектором выходных сигналов (или просто вектором выхода) является вектор . Отметим, что между векторами входа, выхода и состояния существует принципиальное различие. Если все составляющие вектора входа и вектора выхода являются вполне конкретными физическими величинами, то элементами вектора состояния могут быть некоторые абстрактные переменные, физическая природа которых не всегда определена.

Векторно-матричная запись модели линейного динамического объекта с учетом уравнения измерения принимает вид:

.                    (4.6)

Если матрицы A(t), B(t) и C(t) не зависят от времени, то объект называется объектом с постоянными коэффициентами, или стационарным, объектов. В противном случае объект будет нестационарным.

При наличии погрешностей при измерении, выходные (регулируемые) сигналы задаются линеаризованным матричным уравнением:

,                        (4.7)


где  – вектор регулируемых (измеряемых) величин; C(t) – матрица связи вектора измерений с вектором состояний; v(t) – вектор ошибок измерений (помехи).

Структура линейной непрерывной системы, реализующая уравнения (4.6) и (2.7) приведена на рис. 4.2.

Рис. 4.2.

Данная структура соответствует математической модели объекта построенной в пространстве состояний его входных x(t), u(t), выходных y(t) и внутренних, или фазовых координат x(t).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9

рефераты
Новости