рефераты рефераты
Главная страница > Учебное пособие: Теоретическая механика  
Учебное пособие: Теоретическая механика
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Теоретическая механика



Рис. 2.10            Рис. 2.11

Уравнения движения запишутся в виде:

ХА = ХА (t)

YА = YА (t)          ( 2.14 )

jА = jА (t)

Кинематические характеристики полюса определяют из уравнений его движения.

Скорость любой точки плоской фигуры, движущейся в своей плоскости слагается из скорости полюса (произвольно выбранной в сечении точки А) и скорости вращательного движения вокруг полюса (вращение точки В вокруг точки А).

Ускорение точки движущейся плоской фигуры складывается из ускорения полюса относительно неподвижной системы отсчета и ускорения за счет вращательного движения вокруг полюса.

                     (2.15 )

                     (2.16 )


Во втором варианте движение сечения рассматривается как вращательное вокруг подвижного (мгновенного) центра P (рис.1.12). В этом случае скорость любой точки В сечения будет определяться по формуле для вращательного движения

                       (2.17 )

Угловая скорость вокруг мгновенного центра Р может быть определена если известна скорость какой либо точки сечения, например точки А.        

             

                      (2.18)


Рис.2.12                 

Положение мгновенного центра вращения может быть определено на основании следующих свойств:

-  вектор скорости точки перпендикулярен радиусу;

-  модуль скорости точки пропорционален расстоянию от точки до центра вращения ( V= wR) ;

-  скорость в центре вращения равна нулю.


Рассмотрим некоторые случаи определения положения мгновенного центра.

1. Известны направления скоростей двух точек плоской фигуры (рис.2.13). Проведем линии радиусов. Мгновенный центр вращения Р находится на пересечении перпендикуляров, проведенных к векторам скоростей.

 2. Скорости точек А и В известны, причем вектора и параллельны друг другу, а линия АВ перпендикулярна  (рис. 2. 14). В этом случае мгновенный центр вращения лежит на линии АВ. Для его нахождения проведем линию пропорциональности скоростей на основании зависимости  V= wR.

3. Тело катится без скольжения по неподвижной поверхности другого тела (рис.2.15). Точка касания тел в данный момент имеет нулевую скорость в то время, как скорости других точек тела не равны нулю. Точка касания Р будет мгновенным центром вращения.

 


Рис. 2.13                      Рис. 2.14                   Рис. 2.15

 Кроме рассмотренных вариантов скорость точки сечения может быть определена на основании теоремы о проекциях скоростей двух точек твердого тела.

Теорема: проекции скоростей двух точек твердого тела на прямую, проведенную через эти точки, равны между собой и одинаково направлены.

Доказательство: расстояние АВ изменяться не может, следовательно,

VА cosa не может быть больше или меньше VВ cosb (рис.2.16 ).

 


            

           

              Рис. 2.16

 Вывод: VАcosa =VВcosb.               (2.19 )

2.4. Сложное движение точки

В предыдущих параграфах рассматривалось движение точки относительно неподвижной системы отсчета, так называемое абсолютное движение. В практике встречаются задачи, в которых известно движение точки относительно системы координат, которая движется относительно неподвижной системы. При этом требуется определить кинематические характеристики точки относительно неподвижной системы.

Принято называть: движение точки относительно подвижной системы – относительным, движение точки вместе с подвижной системой – переносным, движение точки относительно неподвижной системы – абсолютным. Соответственно называют скорости и ускорения:

 -относительные;- переносные; -абсолютные.

 Согласно теореме о сложении скоростей абсолютная скорость точки равна векторной сумме относительной и переносной скоростей (рис.).

            ,           (2.20)

Абсолютное значение скорости определяется по теореме косинусов

,        (2.21)


                       

         

            

Рис.2.17

Ускорение по правилу параллелограмма определяется только при поступательном переносном движении

            

          ,       (2.22)

При непоступательном переносном движении появляется третья составляющая ускорения, называемое поворотным или кориолисовым.

         ,           (2.23)

 

где  

Кориолисово ускорение численно равно

           ,

 где a – угол между векторами и

Направление вектора кориолисова ускорения удобно определять по правилу Н.Е. Жуковского: вектор  спроектировать на плоскость, перпендикулярную оси переносного вращения, проекцию повернуть на 90 градусов в сторону переносного вращения. Полученное направление будет соответствовать направлению кориолисова ускорения.

2.5 Вопросы для самоконтроля по разделу

1. В чем состоят основные задачи кинематики? Назовите кинематические характеристики.

2. Назовите способы задания движения точки и определение кинематических характеристик.

3. Дайте определение поступательного, вращательного вокруг неподвижной оси, плоскопараллельного движения тела.

4. Как задается движение твердого тела при поступательном, вращательном вокруг неподвижной оси и плоскопараллельном движении тела и как определяется скорость и ускорение точки при этих движениях тела?


3. Динамика

3.1 Задачи динамики

В динамике решаются два типа задач. Первая состоит в определении действующих сил при заданном законе движения материального объекта (точки или системы). Вторая задача обратная первой: определяется закон движения материального объекта при известных действующих на него силах.

3.2. Основные понятия динамики

Инерционность - свойство материальных тел сохранять состояние покоя или равномерного прямолинейного движения, пока внешние силы не изменят этого состояния.

Масса - количественная мера инерционности тела. Единица измерения массы - килограмм (кг).

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости