рефераты рефераты
Главная страница > Учебное пособие: Теоретическая механика  
Учебное пособие: Теоретическая механика
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Теоретическая механика

В результате указанного преобразования получается сходящаяся система сил и сумма моментов пар сил. Действие сходящейся системы сил заменяют действием суммарной силы, действие моментов - суммарным моментом. Суммарный вектор * называют главным вектором системы сил, суммарный момент * - главным моментом системы сил.

 

Рис.1.22

Вывод: произвольная система сил в результате тождественного преобразования приводится к главному вектору * и главному моменту * системы сил.

Аналитически главный вектор и главный момент системы сил могут быть определены через их проекции на оси координат

        ,      ( 1.8 )

        .       (1.9)           

1.8 Условия равновесия систем сил

 
1.8.1. Равновесие системы сходящихся сил

По определению (см.п.1.1) действие системы сходящихся сил эквивалентно действию одной равнодействующей силы . Для равновесия тела необходимо и достаточно, чтобы равнодействующая равнялась нулю = 0.

Из формулы (1.7) следует, что для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Y,Z равнялась нулю

                

               å Fkx = 0    

               å Fky = 0           ( 1.10)   åFkz = 0

  Для равновесия плоской сходящейся системы сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Y равнялась нулю

å Fkx = 0

               å Fky = 0            ( 1.11 )

 

1.8.2. Равновесие произвольной системы сил.

Действие произвольной системы сил эквивалентно действию главного вектора и главного момента. Для равновесия необходимо и достаточно выполнения условия

             ** = 0             (1.12 )

* = 0               

Для равновесия произвольной системы сил необходимо и достаточно, чтобы суммы проекций всех сил на оси X,Y,Z и суммы моментов всех сил относительно осей X,Y,Z равнялись нулю.


               åFkx = 0 

               åFky = 0 

             åFkz = 0             (1.13)

åМх (k) = 0

åМy (k) = 0

åМz (k) = 0

Для равновесия плоской произвольной системы сил необходимо и достаточно, чтобы сумма проекций главного вектора на оси X,Y, и алгебраическая сумма моментов сил относительно центра О были равны нулю.

              åFkx = 0

              åFky = 0              (1.14)

              åМо (k) = 0

       

1.9. Вопросы для самоконтроля по разделу

1. Дайте определение абсолютно твердого тела, материальной точки, силы, линии действия силы, системы сил (плоской, пространственной, сходящейся) произвольной систем сил.

2. Что называется проекцией силы на ось, на плоскость?

3. Что называется моментом силы, как определяется момент силы относительно точки?

4. Изменяется ли момент силы относительно данной точки при переносе силы вдоль линии ее действия?

5. В каком случае момент силы относительно данной точки равен нулю?

6. Какая система сил называется парой сил, чему равен момент пары сил?

7. Что называют связью? В чем заключается принцип освобождения от связей? Перечислите основные типы связей, покажите их реакции.

8. Каковы условия и уравнения равновесия системы сходящихся и произвольной систем сил, расположенных в пространстве и в плоскости?

9. Сформулируйте порядок решения задач статики.


2. Кинематика

Кинематика- раздел теоретической механики, в котором рассматриваются общие геометрические свойства механического движения, как процесса, происходящего в пространстве и во времени. Движущиеся объекты рассматривают как геометрические точки или геометрические тела. Соответственно, изучение делят на кинематику точки и кинематику твердого тел

2.1 Основные понятия кинематики

Закон движения точки (тела) – зависимость положения точки (тела) в пространстве от времени.

Траектория точки – геометрическое место положений точки в пространстве при ее движении.

Скорость точки (тела) – характеристика изменения во времени положения точки (тела) в пространстве.

Ускорение точки (тела) – характеристика изменения во времени скорости точки (тела)

2.2. Кинематика точки

2.2.1 Способы задания движения точки

Задать движение точки - значит задать изменение ее положения по отношению к выбранной системе отсчета. Существует три основных систем отсчета: векторная, координатная, естественная. Соответственно возможны три способа задания движения точки.

В векторной системе положение точки относительно начала отсчета задается радиус-вектором  (рис.2.1). Закон движения  

Положение точки в системе координат OXYZ задается тремя координатами X,Y,Z (рис.2.2). Закон движения – x = x( t ), y = y( t ), z = z( t ).

Положение точки в естественной системе отсчета задается расстоянием S от начала отсчета до этой точки вдоль траектории (рис.2.3). Закон движения –  s = s( t ).     


                                          

                                                                                

           

   Рис.2.1                  Рис. 2.2                  Рис.2.3        

Движение точки при естественном способе задания движения определено если известны:

1.Траектория движения.

2.Начало и направление отсчета дуговой координаты.

3.Уравнение движения.

  При естественном способе задания движения, в отличии от других способов, используются подвижные координатные оси, движущиеся вместе с точкой по траектории. Такими осями являются (рис. 2.4).

Касательная () – направлена в сторону возрастания дуговой координаты по касательной к траектории.

Главная нормаль (п) – направлена в сторону вогнутости кривой.

Бинормаль (в) – направлена перпендикулярно к осям t , n.



   

Рис. 2.4

2.2.2 Определение кинематических характеристик точки

Траектория точки

В векторной системе отсчета траектория описывается выражением

В координатной системе отсчета траектория определяется по закону движения точки и описывается выражениями z = f (x,y) - в пространстве, или y = f(x ) – в плоскости.  

В естественной системе отсчета траектория задается заранее.

Скорость точки

Согласно определению (см. п. 2.1) скорость характеризует изменение во времени положения точки (тела) в пространстве.

Определение скорости точки в векторной системе координат

При задании движения точки в векторной системе координат отношение перемещения к интервалу времени  называют средним значением скорости на этом интервале времени .

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости