рефераты рефераты
Главная страница > Учебное пособие: Елементи квантової фізики  
Учебное пособие: Елементи квантової фізики
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Елементи квантової фізики

Таке проходження частинки виявляється можливим дякуючи існуванню під бар’єром хвильової функції, яка «прокладає» шлях частинки на будь-яку відстань. Тунельний ефект є головною причиною a - розпаду радіоактивних ядер.


2. Фізика атомів і молекул

 

2.1. Атом водню

2.1.1. Використання рівняння Шредінгера до атома водню.  

Хвильова функція. Квантові числа.

2.1.2. Енергія атома водню і його спектр. Виродження рівнів.

Правила відбору.

2.1.3. Механічний і магнітний моменти атома водню.

2.1.1.Використання рівняння Шредінгера до атома водню.

Хвильова функція. Квантові числа.

Теорія Бора будови і властивостей енергетичних рівнів електронів у воднево подібних системах знайшла своє підтвердження в квантовій механіці. Квантова механіка також стверджує, що:

a)  електрони в атомах водню знаходяться лише в дискретних енергетичних станах. При переході електронів із одних станів в інші випромінюється або поглинається фотон;

б).не існує певних колових орбіт електронів. В силу хвильової природи електрони «розмиті» в просторі подібно до хмарки негативного заряду. Розміри і форму такої хмарки в заданому стані можна розрахувати.

Розглянемо рух електрона в кулонівському полі ядра з зарядом Ze, потенціальна енергія якого виражається формулою

                                    ,                                            (2.1.1)

де r - відстань між електроном і ядром.

Стан електрона в атомі водню або воднево подібному атомі описується деякою хвильовою функцією Y, яка задовольняє стаціонарному рівнянню Шредінгера:

                        ,                 (2.1.2)

де  - оператор Лапласа; Е - значення повної енергії електрона в атомі; m - маса частинки; (x,y,z) - хвильова функція в декартові системі координат.

Для розв’язування рівняння Шредінгера (2.1.2), тобто знаходження виду хвильової функції для електрона в атомі водню слід перейти від декартових координат до сферичних. В цьому випадку зв’язок між параметрами цих систем координат визначається з рис.2.1.

                                                

Рис.2.1.

Співвідношення, які зв’язують координати x,y,z декартової прямокутної системи координат з сферичними координатами r, q, j  наступні:

                                                                        (2.1.3)

Таким чином можна вважати, що хвильова функція y електрона в атомі водню залежить від  сферичних координат, тобто y=y(r, q, j).

Опустивши не складні, але досить громіздкі перетворення переходу від декартової системи координат до сферичної, одержимо:

.

(2.1.4)

Якщо розглядати основний (не збуджений) стан атома водню, то другою і третьою складовими в рівнянні (2.1.4) можна знехтувати. Електрон в такому стані рухається лише по коловій траєкторії, і хвильова функція не залежить від q і j. Тому

                         .                      (2.1.5)

Хвильова функція y електрона в основному стані (2.1.5) є функцією лише r, тобто y=y( r). Такий стан називається s-станом; він має сферично-симетричний характер. Імовірність виявити електрон у заданій точці атома - залежатиме лише від r. Умовам стаціонарного стану відповідає легко диференціруєма центральносиметрична функція, яка має вигляд:

                                     ,                                            (2.1.6)

де a - деяка стала величина, яка має розмірність довжини.

Необхідні похідні від (2.1.6) підставимо в (2.1.5). Після скорочення на  одержимо:

                                   .                          (2.1.7)

Рівність (2.1.7) має місце для будь-яких значень r при виконанні наступних умов:

                                                                                   (2.1.8)

З рівностей (2.1.8) одержуємо

                                                                                   (2.1.9)

                                                                          (2.1.10)

Покажемо, що вираз (2.1.9) є найбільш імовірною відстанню електрона в атомі водню до ядра. Імовірність знайти електрон на відставні r від ядра, точніше в інтервалі відстаней від r  до r+dr, тобто в кульковому шарі з об¢ємом dV=4pr2 dr, дорівнює:

                        .                            (2.1.11)

З урахуванням (2.1.6), хвильової функції основного стану маємо:

                                  ,                                   (2.1.12)

де  - густина імовірності.

Дослідимо вираз (2.1.12) на максимум, тобто похідну від w(r) прирівняємо до нуля

                                     .

                                                 

Звідки

                                    r=a.                                                                  (2.1.13)

Цей результат є окремим випадком загального висновку: борівські орбіти електрона в атомі водню є геометричними місцями точок, в яких з найбільшою імовірністю можна виявити електрон.

Залежність густини імовірності w(r) виявити електрон на різних відстанях від ядра показана на рис.2.2.


                                                     

                                                    

                                                         

                                             Рис.2.2.

За теорією Бора імовірність виявити електрон у стані з n=1 відмінна від нуля лише для r=a, а згідно з висновками квантової механіки ця відстань є лише найбільш імовірною.

Теорія Бора дає можливість визначити значення енергії електрона в будь-якому енергетичному стані, а також радіус відповідних борівських орбіт:

                                             ,                           (2.1.14)

                                    ,                                     (2.1.15)

де m - маса електрона; e - заряд електрона; e0 - діелектрична проникність вакууму;  - стала Планка, поділена на 2p; n=1,2,3... - головні квантові числа.

Співставлення (2.1.9) і (2.1.14), а також (2.1.9) і (2.1.15) показують, що висновки квантової механіки і теорії Бора повністю співпадають. Це співподання підкреслює значну історичну роль теорії Бора, яка ще не є квантовою, однак і не класичною теорією.

Хвильові функції для наступних двох енергетичних рівнів електронів в атомі водню мають вигляд

                                   ,                                       (2.1.16)

                                  .                              (2.1.17)

Ці хвильові функції також є розв¢язками рівняння (2.1.4) при умові, що  і . Можна показати, що формула (2.1.14) є значенням енергії електрона на будь-якому енергетичному рівні.

Однак для повного пояснення стану електрона в атомі водню необхідні ще два квантові числа, які входять у відповідні рівняння хвильових функцій і які характеризують момент імпульсу електрона в атомі.

Для збуджених атомів хвильові функції не є центрально симетричними і залежать не лише від r, а і від q і j. Ці хвильові функції містять три цілочислові параметри, які називають квантовими числами. Серед них:

n - головне квантове число, співпадає з аналогічним квантовим числом теорії Бора і набуває значень від 1 до ¥;

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

рефераты
Новости