рефераты рефераты
Главная страница > Учебное пособие: Елементи квантової фізики  
Учебное пособие: Елементи квантової фізики
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Елементи квантової фізики

Аналіз рівняння (1.54) показує, що енергетичний спектр квантового осцилятора є дискретним і що власні значення енергії дорівнюють:

              

В енергетичному спектрі (1.54) проміжки між енергетичними рівнями не залежать від квантового числа n, а є однаковими

                 (1.55)

Як показано на рис. 1.9,  де енергетичний спектр квантового осцилятора суміщається з аналогічним спектром класичного осцилятора, квантовий осцилятор не має значень енергії, рівних нулю.

Найменше значення енергії квантового осцилятора дорівнює

                                                                                                    (1.56)

Меншої енергії квантовий осцилятор не може мати навіть при абсолютному нулі температур.

                                                           

                                                            Рис. 1.9

Покажемо наближеним способом, що енергія квантового осцилятора квантується. З рис 1.10 видно, що на відрізку l=2х0 вкладається ціле число півхвиль де Бройля, тобто

                                                                                            (1.57)


                                               

                                                                        

Рис 1.10

де  - середнє значення довжини хвилі де Бройля.

Звідки

                                                     (1.58)

Середнє значення імпульсу кванта хвилі де Бройля

 

                                                 (1.59)

Середня кінетична енергія такого осцилятора

                                               (1.60)

Відомо, що повна енергія Е перевищує середнє значення кінетичної енергії в два рази, тобто

                                       (1.61)

З іншої точки зору повна енергія квантового осцилятора дорівнюватиме максимальній потенціальній енергії

                                  (1.62)

Перемножимо рівності (1.61)  і  (1.62)

 

                             (1.63)

Або

                                             (1.64)

В межах точності наших міркувань »1, тому

                                               (1.65)

де n =1,2,3,... - цілі числа.

Наближений розрахунок показує, що енергія квантового осцилятора набуває ряду дискретних значень, тобто квантується.

Точне значення енергії квантового осцилятора для не збудженого, нульового рівня можна одержати із рівняння Шредінгера (1.53), якщо згідно рис. (1.10) скористатись функцією Гаусса, яка дорівнює

                                                        (1.66)

де  а - стала величина, яку слід  визначити.

Другу похідну від (1.66) підставимо в (1.53)

 

звідки

 .                                    (1.67)

Тотожність (1.67) має місце при рівності коефіцієнтів при х2 і вільних членів, тобто

                                                (1.68)

Система рівнянь (1.68) дає значення енергії Е і сталої величини а

                                                 (1.69)

 

Таким чином функція Гаусса є розв’язком рівняння Шредінгера (1.53) лише за умови, коли  .

В цьому випадку

 

.                                                    (1.70)

Слід відмітити, що так як відстань між суміжними рівнями енергії квантового осцилятора дорівнює  то з урахуванням    одержуємо енергетичний спектр квантового осцилятора у вигляді

                                                  (1.71)

де  n = 0,1,2,3....

1.3.4.Проходження частинки крізь потенціальний бар’єр. Тунельний ефект.

Класична частинка не може перебувати в тих місцях, де її потенціальна енергія U(x) перевищувала б повну енергію частинки E. Щодо квантової частинки, то вона має таку властивість із-за того, що існує відмінна від нуля імовірність проникнення її крізь потенціальний бар’єр, тобто в область, де U(x) > E

Проведемо оцінку цієї імовірності шляхом розв’язування наступної задачі. Нехай квантова частинка з масою m, рухаючись в напрямі осі х, вдаряється в потенціальний бар’єр кінцевої висоти U0, тобто

причому енергія частинки e менша висоти бар’єра U0, (рис. 1.11).


                                

                                            

Рис. 1.11

В області потенціального бар’єра рівняння Шредінгера для стаціонарних станів набуде вигляду

                                                              (1.72)

Якщо позначити вираз  через  , то рівняння (1.72) перепишеться

.                                            (1.73)

Розв’язком рівняння (1.34) може бути функція

 ,                                               (1.74)

де А і В - деякі константи, і - уявна одиниця.

Експонента з додатним знаком фізичного змісту не має і може бути відкинута, так як не повинно бути зростання імовірності в області потенціального бар’єра. Тому в області потенціального бар’єра (х>0), хвильова функція частинки Yx визначається рівністю

                                           Yx = Be-ix                                                  (1.75)

Коефіцієнт В у виразі (1.75) пов’язаний з інтенсивністю променя частинок, які рухаються в напрямі бар’єра, а тому задається довільно. Як правило х>0  координати частинок розподіляються з густиною імовірності

                     ,                   (1.76)

де w(0) дорівнює значенню |Yx|2 при х=0.

Рівняння (1.76) показує, що із збільшенням глибини проникнення в область потенціального бар’єра, густина імовірності w(х) зменшується експоненційно. Це зменшення буде тим швидше, чим більша різниця енергій U0 - E.

Знайдемо глибину проникнення елементарної частинки в область потенціального бар’єра при умові, що m = 9,1 10-31кг (електрон),                    U0 - E = 10-4 eB, а густина імовірності w) на цій відстані зменшується в е разів

.

Ця відстань перевищує на два порядки діаметр атома водню. Глибина проникнення зменшується на порядок, якщо різниця енергій U0 - E зросте до  10-2 еВ.

Здатність квантових частинок проникати в область потенціального бар’єра приводить до тунельного ефекту.  Його суть полягає в проникненні частинки із однієї області в іншу область, які поділені потенціальним бар’єром навіть в тих випадках, коли енергія частинки Е менше висоти потенціального бар’єра U0.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

рефераты
Новости