рефераты рефераты
Главная страница > Курсовая работа: Разработка магнитодиода  
Курсовая работа: Разработка магнитодиода
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Разработка магнитодиода

L, С, A - соответственно длина, высота и ширина магнита;

Z - длина рабочего зазора;

геометрические размеры концентраторов: Lк - длина прямой части концентратора, Ак - ширина концентратора, Вк - толщина концентратора;

α - угол между изгибной частью концентратора и вертикалью.

Вк =0,001м; Lк =0,005м;

Ак=0,003м; Z =0,002м;

L=0,003м; С=0,004м;

A=0,003м; α=30º.

Для расчета системы концентратор магнитного потока условно разбивается на участки, ограниченные пунктирными линиями. Границы деления выбраны с учетом упрощения дальнейшего расчета.


Рис. 3.1 Дипольная магнитная система. Схема путей рассеяния магнитного потока: I - магнит; II - концентраторы магнитного потока; III - рабочий зазор; проводимости а) магнита: 1 - Lm, б) концентраторов: 2 - Lа2 - между боковыми торцами; 3 - Lа3 - между прямыми участками наружных (внешних) поверхностей; 4 - Lа4 - между боковыми поверхностями прямых участков; 5 - Lа5 - между секторными участками боковых поверхностей; 6 - Lа6 - между внутренними участками изогнутых поверхностей; 7 и 8 - Lа7 и Lа8 - между боковыми участками изогнутых поверхностей; 9 - Lа9 - между внутренними прямыми участками; 10 и 11 - Lа10 - между внешними участками изогнутых поверхностей; 12 - Lа12 - между внешними участками изгиба; в) рабочего зазора: 13 - Lр


Расчет:

Общая проводимость магнита определяется с учетом того, что проводимость умножается на 4 за счет учета четырех плоскостей рассеивания

, (3.1)

где μ0 - магнитная постоянная (μ0=4π·10-7 Гн/м).

 

Определяется проводимость рассеяния арматуры, соответствующая путям 2 и 4 (рис.3.1), причем для путей 4 проводимость удваивается за счет учета обоих сторон системы

,  (3.2)

 (3.3)

Проводимость рассеяния арматуры, соответствующая путям 3

, (3.4)

где g1 и g2 определяются из графиков (рис.3.2). Параметры g1 и g2 зависят соответственно от Lк /С и Aк /С.


Рис. 3.2. Проводимость между параллельными прямоугольными поверхностями, обращенными в противоположные стороны:

g’=f(m’,n’), где ,

g”=f(m”,n”), где ,


Рис. 3.3. Замена секторов квадратами: Т1 – расстояние между квадратами, Х1 – сторона квадрата

Для определения проводимости рассеяния 5 между секторными частями секторы заменяются квадратами, эквивалентными по площади секторам, причем центры квадратов расположены на линиях центров масс секторов (рис.3.3) (проводимость удваивается за счет обоих сторон системы) \

,  (3.5)

где X1 и T1 - соответственно сторона квадрата и расстояние между ними.

Площадь сектора

,  (3.6)

Сторона квадрата Х1 и расстояние между квадратами Т1

 

  (3.7)

Расстояние между квадратами

, (3.8)

Проводимости рассеяния арматуры 6 рассчитываются по аналогии с методом, как длина отрезка, проведенного под углом (π/2-α/2) к эллипсу, образованному полуосями Λа 6_1 и Λа 6_2 (рис.3.4-3.5)


 (3.9)

,

 (3.10)

Уравнение эллипса:

Уравнение прямой:

Находим точку пересечения эллипса и прямой: x=4.9275·10-10

y=1.8389·10-9

Находим Λа 6, как длину отрезка между двумя точками (0; 0) и (4.9275·10-10; 1.8389·10-9):

Проводимости рассеяния 7 и 8 рассчитываются аналогично (7.5), ипользуя эквивалентные прямоугольники

, (3.11)

, (3.12)

где Х 2 - Х5 - стороны прямоугольников; Т2 и Т3 - расстояния между ними. Площади прямоугольника (для путей рассеяния 7) и треугольника (для путей рассеяния 8) соответственно определяются

, (3.13)

, (3.14)

Стороны новых прямоугольников

, (3.15)

  (3.16)

 (3.17)

 (3.18)

Проводимость рассеяния арматуры 9 согласно

, (3.19)

Проводимости 10 и 11 объединяются в одну и рассчитываются аналогично п.5 (по полуосям эллипса Λа10_1 и Λа10_2), причем значения проводимостей, которые соответствуют полуосям эллипса, определяются согласно рис.3.6, 3.7. Непараллельностью близлежайших сторон фигуры на данном этапе можно пренебречь, но в дальнейшем при расчете проводимости рабочего зазора через выпучивание у краев она учитывается.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

рефераты
Новости