рефераты рефераты
Главная страница > Курсовая работа: Разработка магнитодиода  
Курсовая работа: Разработка магнитодиода
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Разработка магнитодиода

Курсовая работа: Разработка магнитодиода

Содержание

Введение

1. Анализ исходных данных и формирование расширенного технического задания

1.1 Анализ исходных данных

1.2 Расширенное техническое задание

2. Выбор и обоснование применяемых материалов и компонентов конструкции

3. Конструкторские расчеты

3.1 Расчет магнитной системы датчика

3.2 Расчет магнитодиода

4. Разработка топологии кристалла

5. Составление схемы электрической принципиальной устройства

6. Разработка технологии изготовления чувствительного элемента

7. Разработка конструкции датчика и технического процесса сборки измерительной системы

Заключение

Список используемых литературных источников

Приложения


Введение

Для создания автоматизированных систем управления в различных областях народного хозяйства начинают широко применяться различные датчики, в том числе датчики перемещения предметов (ДПП). В настоящее время они используются в металлорежущих станках с программным управлением, подъемных кранах, конвейерах и в различных транспортных системах и радиоэлектронике. [2]

Принципы работы ДПП основываются на различных физических явлениях: изменениях емкости и электромагнитной индукции, гальваномагнитном эффекте и др.

Особую ценность для автоматики эти датчики представляют благодаря возможности бесконтактной связи между элементами в устройствах, что позволяет исключить механические и электрические связи. [2]

Датчики движущихся предметов, работающие на основе фотоэффекта (фотореле), потребляют большую мощность, чувствительны к пыли и грязи, что затрудняет их эксплуатацию. ДПП, использующие емкостные явления, имеют большие габаритные размеры и довольно сложные конструкцию и электрическую схему. Относительно широкое применение получили ДПП, работающие на основе электромагнитной индукции. Они могут обнаружить металлические предметы на расстоянии до 10 мм. Основной недостаток таких ДПП - большие размеры чувствительных элементов (катушек).

Датчики движущихся предметов, использующие гальваномагнитные явления, отличаются высокой чувствительностью, надежностью, малыми габаритными размерами и малой потребляемой мощностью, простотой конструкции. Они делятся на две группы. К первой относятся ДПП, срабатывающие при перемещении предметов из магнитомягкого материала, ко второй - ДПП, срабатывающие при перемещении предметов из немагнитного материала с укрепленными на них постоянными магнитами. [2]

Датчики движущихся предметов на основе эффекта Холла, в отличие от ДПП на магниторезисторах, чувствительны к направлению перемещения предметов. ДПП на датчиках Холла и магниторезисторах, обладая определенными преимуществами, имеют существенный недостаток - малые значения выходного сигнала, что затрудняет построение электрических схем, формирующих электрические сигналы.

В последние годы для повышения надежности и точности, стойкости к воздействиям окружающей среды (в том числе к вибрациям и ударам), долговечности в ДПП начали использовать магнитодиоды. При прочих равных условиях ДПП на магнитодиодах позволяет получать выходной сигнал, превышающий сигналы на датчиках Холла и магниторезисторах более чем на порядок.


1. Анализ исходных данных и формирование расширенного технического задания

1.1 Анализ исходных данных

В данном курсовом проекте было предложено разработать конструкцию и технологию изготовления датчика определения перемещения предмета до 15мм на основании магнитной системы и магнитодиода с габаритными размерами Ø15×15мм. Измерить перемещение предмета до заданного расстояния, ограничиваясь заданными габаритами датчика не представляется возможным, поскольку в корпусе надо учитывать размеры системы магнита и магнитодиода и размеры на их крепление.

Осуществления определение заданного перемещения датчиком можно достичь двумя способами:

применения миниатюрных редукторов и систем рычагов в датчике;

редактирование габаритных размеров датчика.

Первый способ оставляет без изменения габаритные размеры, но имеет ряд недостатков: он менее технологичен, увеличивается трудоемкость и требуется высокая точность при изготовлении, в датчике будет наблюдаться увеличение погрешности с увеличением срока службы из-за наличия трущихся элементов конструкции в виду этого датчик будет обладать низкой надежностью.

Поэтому на основе расчетов магнитной системы и магнитодиода, исходя из предложенного нам измерения перемещения предмета мы примем минимальные из расчетных габаритные размеры датчика.

Предложенный нам материал чувствительного элемента арсенид галлия полностью удовлетворяет всем параметрам по условию задания, а именно температурным пределам от минус 40 до плюс 80 °С.

Применение датчика в металлорежущих станках с программным управлением, подъемных кранах, конвейерах и в различных транспортных системах с повышенными виброударными нагрузками требует при проектировании конструкции более жестких требований, например на материал конструкции, толщину элементов, способ крепления датчика и крепление узлов между собой.

1.2 Расширенное техническое задание

1. Наименование изделия: “Датчик определения перемещения движущегося предмета ” (ДПП).

2. Датчик представляет собой систему определения перемещения движущегося предмета на основании дипольной магнитной системы и магнитодиода. Габаритные размеры системы Ø15×15мм.

3. Датчик представляет собой законченное устройство.

4. ДПП подключается к электроизмерительными приборам.

5. Диапазон измеряемых перемещений составляет 1-15мм.

6. Рабочее напряжение 2В.

7. Напряжение Холла 2,5В.

8. Ток питания магнитодиода 0,25мА.

9. Материал тела магнитодиода - арсенид галлия с удельным сопротивлением 25кОм·см.

10. Концентраторы магнитного потока должны быть изготовлены из магнитомягкого материала и не должны перенасыщаться под действием поля постоянного магнита.

11. Коэффициент применяемости - не менее 0,6.

12. Устройство относится к группе возимой РЭА, устанавливаемой в автомобиле, стационарной, устанавливаемой на станках с ЧПУ.

13. Характеристики внешних воздействий одинаковы для режимов хранения, перевозки и работы. Температура окружающей среды может изменяться от минус 40 до плюс 85 °С. Относительная влажность до 80% при температуре плюс 25°С. Пониженное атмосферное давление - 61 кПа.

14. Среднее время наработки на отказ должно быть не менее 20 тыс. час.

15. Конструкция устройства должна предусматривать работу оператора с ним без применения специальных мер обеспечения безопасности.

16. Ориентировочная программа выпуска - 800000 приборов в год.


2. Выбор и обоснование применяемых материалов и компонентов конструкции

Важную группу полупроводников составляют ковалентно-ионные соединения типа А111ВV и ионно-ковалентные соединения типа АIIВVI, кристаллизующиеся в алмазоподобной решетке, а также некоторые другие, например AIVБVI. Наиболее разработаны и перспективны арсенид и фосфид галлия и фосфид и антимонид индия. Свойства монокристаллических GаАs, GаР, а также Gе и Si приводятся в табл.2.1 [1]

Таблица.2.1

«Алмаз»                                              «Цинковая обманка»

Наименование параметра Значение параметра
Si Ge GaAs GaP

Тип кристаллической структуры

Параметр решетки, нм

Температура плавления, К

Предельная рабочая температура, К

Подвижность электронов

при 300 К, см2/ (В·с)

Подвижность дырок при

300 К, см2/ (В·с)

Ширина запрещенной зоны

при 300 К, эВ

Удельное сопротивление

(собственное) при 300 К, Ом·см

Концентрация носителей ni при 300 К

ТКЛР (300 К), К-1

Коэффициент теплопроводности, Вт/ (м·К)

Диэлектрическая проницаемость έ

Плотность, г·см-3

0,543

1683

420

1400

475

1,12

2·105

1,45·1010

2,6·10-6

140

11,6

2,3

0,566

1210

370

3900

1900

0,67

60

2,4·1018

,75·10-6

60

15,8

5,5

0,565

1511

670

8500

400

1,43

109

6·108

6,9·10-6

45

10,9

5,5

0,545

1640

1170

150

75

2,24

108

5,8·10-6

54

13,3

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

рефераты
Новости