рефераты рефераты
Главная страница > Контрольная работа: Резьбовые соединения  
Контрольная работа: Резьбовые соединения
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Контрольная работа: Резьбовые соединения

 


Рис. 1.4

При N < Nlim имеет место предел ограниченной выносливости slim (sRN).

Как видно из рис. 1.4, чем выше напряжение s, тем раньше начнется усталостное разрушение.

Связь между пределами выносливости по уравнению Велера:

slimqN = slimbq Nlim, откуда slim = slimbKL,


где KL = (Nlim / N)1/ q называют коэффициентом долговечности.

При N ³ Nlim принимают KL = 1.

Показатель степени q зависит от материала, термообработки, вида напряжений, влияния условий эксперимента и т.д. Он колеблется от 4 до 20, и его значения рекомендуются в каждом конкретном случае расчета детали (узла).

Пределы выносливости материалов (кривые усталости) определяют на стандартных испытательных образцах. Образец – это гладкий цилиндрический стержень малого диаметра (например, 10 мм) со свободной полированной поверхностью без упрочнения и термообработки. Нет нужды доказывать, что реальные детали отличаются от образцов формой, наличием на поверхностях посадок и других концентраторов напряжений (резьба, пазы, шлицы, галтели и др.), размерами, термообработкой, шероховатостью. Все эти отличия влияют на прочность и обязательно должны учитываться при расчетах.

В общем случае предел выносливости детали при асимметричном цикле нагружения:

slimD = 2s-1 / [(1 – R) KsD / KLs + ysD(1 + R)], (1.2)

(tlimD – то же с заменой символов s на t),

где s-1 – предел длительной выносливости образца при симметричном цикле нагружения, МПа; R – коэффициент асимметрии цикла; KsD = (Ks /Kds +1/KFs – – 1) / KV – коэффициент снижения предела выносливости при переходе от образца к реальной детали. Здесь Ks – эффективный коэффициент концентрации напряжений; Kds – коэффициент влияния размеров детали; KFs – коэффициент влияния качества (шероховатости) поверхности; KV – коэффициент влияния поверхностного упрочнения (термообработки); ysD – коэффициент влияния асимметрии цикла напряжений; KLs = (NlimD / NE)1/ q – коэффициент долговечности детали (узла). Здесь NlimD – базовое число циклов детали; NЕ – эквивалентное число циклов изменения напряжений:

NE = S [(si / smax)qNi],                                (1.3)

где smax – напряжение от длительно действующей максимальной нагрузки переменного режима; si и Ni – постоянное напряжение и соответствующее ему число циклов i-го постоянного блока циклограммы нагружения.

Коэффициенты в формуле (1.2) выбираются по справочникам.

1.4 Коэффициенты безопасности

Коэффициенты безопасности определяют по напряжениям s и t:

Ss = sпред / smax ³ [Ss]; St = tпред / tmax ³ [St],

где при постоянных напряжениях предельными sпред (tпред) являются предел текучести sТ (tТ) – для пластичных материалов и временное сопротивление sВ (tВ) – для хрупких материалов; при переменных напряжениях предельными являются пределы выносливости деталей slimD, tlimD.

При совместном действии напряжений s и t находят общий коэффициент безопасности: S = Ss St / (Ss2 + St2)1/2 ³ [S], где при постоянных напряжениях [SТ] = 1,3…2 – по пределу текучести sТ; [SВ] = 2…2,4 – по пределу прочности sВ; при переменных напряжениях [S] = 1,5…2,5 – для пластичных и [S] =

= 2,5…4 – для хрупких материалов.


2. Резьбовые соединения

2.1 Основные виды крепежных изделий

Резьба – это образование на поверхности детали выступов и впадин, идущих по винтовой линии. Резьбовое соединение имеет две детали: с наружной резьбой (винт) и с внутренней резьбой (гайка). Все резьбы стандартизованы.

Для соединения деталей применяют болты (винт с гайкой, рис. 2.1, а), винты (рис. 2.1, б) – вместо гайки резьба в одной из скрепляемых деталей и шпильки (рис. 2.1, в) – стержень с двумя нарезанными концами (синтез болта с гайкой и винта: ввинчивание по плотной посадке в деталь).

Соединения винтами – самые прогрессирующие, особенно при отсутствии в узлах мест под гайки и при высоких требованиях к их массе и внешнему виду.


На рис. 2.1 указаны: d – номинальный (наружный) диаметр резьбы; l – длина болта, винта, шпильки; l0 – длина нарезанной части стержня под гайку; l1 – глубина завинчивания; l3 – выход стержня за гайку; = 6P – недорез резьбы; х = (2…2,5) Р – сбег резьбы; Н – высота гайки; Н1, Н2 – толщины деталей; s – толщина шайбы; dh – диаметр отверстия в деталях под стержень винта; Р – шаг резьбы.

По характеристикам статической прочности крепежные детали разделяют на классы прочности и группы.

Для стальных болтов, винтов и шпилек по ГОСТ 1759.4–87 предусмотрено 11 классов прочности: 3.6; 4.6; 4.8; 5.6; 5.8; 6.6; 6.8; 8.8; 9.8; 10.9; 12.9 (цифры условно обозначим a.b). Первое число а, умноженное на 100, представляет собой номинальное значение временного сопротивления sВ, МПа, материала резьбовой детали. Произведение a×b×10 – номинальное значение предела текучести sТ, МПа. Второе число – b×10 = sТ / sВ% – степень пластичности материала. Например, болт класса прочности 6.8: sВ = 6×100 = 600 МПа; sТ = 6×8×10 = 480 МПа; sТ / sВ = 8×10 = 80%.

Для стальных гаек с высотой, равной или более 0,8d, по ГОСТ 1759.5–87 установлены 7 классов прочности: 4, 5, 6, 8, 9, 10, 12. Число, умноженное на 100, показывает напряжение от испытательной (пробной) силы, МПа.

Существует правило, что разрыв в соединении должен быть по резьбе стержня болта. Отсюда число класса прочности гайки показывает наибольший класс прочности болта (первую цифру), с которым данная гайка может использоваться в соединении. Например, гайка класса прочности 5 может применяться с болтом класса прочности не выше 5.8.

Крепежные изделия в зависимости от условий эксплуатации могут быть изготовлены с защитным покрытием или без покрытия. Обозначение покрытий от 00 до 13. Например, 00 – без покрытия; 01 – цинковое с хроматированием; 02 – кадмиевое с хроматированием; 05 – окисное; 12 – серебряное; 13 – никелевое.


2.2 Краткие сведения из теории резьбовой пары

1. Момент завинчивания и осевая сила на винте

Подавляющее большинство резьбовых соединений с предварительной затяжкой. Затяжка создается при сборке с целью, чтобы после приложения рабочей нагрузки не происходило раскрытия стыка или сдвига соединяемых деталей.

При завинчивании гайки (или винта с головкой) необходимо приложить момент завинчивания Тзав (рис. 2.2) для преодоления момента ТР сопротивления в резьбе и момента ТТ сопротивления на торце гайки:

Тзав = ТР + ТТ,                                            (2.1)

где TP = Ft d2 / 2 = 0,5 Fзатd2tg(y + j1);                                          (2.2)

ТТ = 0,5 FзатfTdср,                                                                             (2.3)

В формулах (2.2) и (2.3): Ft – окружная (в плоскости, перпендикулярной к оси соединения) движущая сила; Fзат – осевая сила затяжки; d2 – средний диаметр резьбы;          y – угол подъема резьбы; j1 – приведенный (с учетом влияния угла профиля α) угол трения в резьбе: j1 = j / cos(a/2), φ – угол трения материалов пары винт – гайка; fT – коэффициент трения материалов пары гайка – деталь; dср – средний диаметр кольца (рис. 2.2): dср = 0,5 (D + dh).



Угол подъема резьбы y определяют по среднему диаметру d2 (рис. 2.3):

tgy = Ph / pd2 = nP / pd2,

где nP = Ph – ход резьбы, n – число заходов.

Подставляя в формулу (2.1) значения моментов ТР и ТТ, получим

Тзав = 0,5 Fзатd2[tg(y + j1) + fTdср / d2].               (2.4)

Все резьбы геометрически подобны. В среднем для метрической резьбы:

y = 2030¢; d2 » 0,9d; dср » 1,4d; j1 = j / cos300 » 1,15j » 1,15 arctgf. Тогда при f = fT = 0,15 (резьба и торец гайки без смазки) Тзав » 0,2Fзатd. С другой стороны, принимая в среднем длину гаечного ключа L (рис. 2.2) от оси винта до середины ладони рабочего равной 14d, будем иметь момент завинчивания на ключе

Тзав = FPL = 14FPd, где FP – усилие рабочего. Из равенства 0,2Fзатd = 14FPd получим Fзат = 70 FP, т.е. за счет рычага на гаечном ключе и параметров соединения имеем выигрыш в силе затяжки в 70 раз. При f = fT = 0,1 Fзат » 100 FP.

2. Самоторможение в резьбе

Самоторможение – это сохранение затянутого положения гайки так, что для ее отвинчивания следует приложить момент, противоположного направления моменту завинчивания. Момент отвинчивания:

Страницы: 1, 2, 3, 4, 5, 6

рефераты
Новости