рефераты рефераты
Главная страница > Контрольная работа: Классический метод расчета переходных процессов в линейных цепях  
Контрольная работа: Классический метод расчета переходных процессов в линейных цепях
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Контрольная работа: Классический метод расчета переходных процессов в линейных цепях

xвх(t)≈xвх(0)1(t)+∑∆xвх(tj)1(t-tj) (*).

В сумме учитывая все те ступеньки, которые возникли до нашего момента времени t. Если ступеньки брать помельче, выражение будет получаться поточнее, но все равно приближенно. Получим теперь точное выражение. В нашем случае:

xвых(t)≈xвх(0)h(t)+∑∆xвх(tj)∙h(t-tj) (**).

Известно, что ∆xвх(tj)/∆tj≈x(tj) и тогда (**) перепишется xвых(t)≈xвх(0)∙h(t)+∑xвх′(tj)∆tjh(t-tj). Уменьшая ∆tj до dtj вместо суммы получим интеграл: (для удобства записи tj→λ)

Если бы функция имела скачки не только в момент 0, но и в какие-то другие моменты. Пришлось бы для каждого интервала времени в котором функция непрерывна, записывать свои выражения отличающиеся друг от друга наличием реакции на скачки случившиеся до рассмотрения момента времени t.

Пример: Есть h(t)=0,5e-500t. Надо найти реакцию цепи на входное воздействие.

 

Описывает входное воздействие аналитически. В нашем случае можно считать, что в интервале от 0 до 10-3 Uвх1(t)=a+b∙t:


30=10+b∙10-3; a=10; b=2∙104.

Uвх2(t)=15+A∙e-t/τ ; τ=8∙10-4 ; t/τ=10-3/8∙10-4 ;

Uвх2(t=10-3)=5=15+A∙e-1,25; A≈-30.

Теперь для каждого интервала времени записываем свое выражение:

0≤t<10-3

.

Берем интеграл, приводим подобные члены, строим графики. Но в рамках курса ТОЭ РГРТУ требуется ответ до состояния

t≥10-3

Применение импульсных характеристик

Известно, что

1) g(t)= -1{H(p)},

2) xвых(p)=xвх(p)H(p),

3) =,

Пусть , ,

тогда =-1=

Фактически это есть другая форма интеграла Дюамеля, которая может быть получена используя связь g(t) и h(t). Порядок применения получения выражения такой же, но при численном нахождении интеграла удобней использовать собственно интеграл Дюамеля.

Применение передаточной функции

Если известно H(p) и xвх(t), можно записать изображение xвх(p), вычислить xвых(p)=H(p)xвх(p) и перейти к оригиналу.

Особенно удобно применять H(p)тогда, когда xвх(t) имеет простой вид, позволяющий легко записать изображение xвх(p) либо сразу для всего сигнала, либо разложение его на более простые компоненты и воспользовавшись принципом положения.

Например:

xвх(t)=10e-100t

, ,

, , ,

, ,

,

,

Этот входной сигнал можно представить в виде совокупности двух более простых. Тогда

1) Для 0 ≤t<10-2

,

2) Для t≥10-2, t<2∙10-2

3) .

Теперь умножая на H(p) находим изображающие реакции и затем переходим к оригиналу.


Список используемых источников

1. Основы теории цепей. Учебник для вузов./ Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов.-5-е изд. перераб.-М.: Энергоатомиздат, 1989. 528 с.

2. В.П. Попов. Основы теории цепей. Учебник для вузов. -М.: Высшая школа, 1985. 496 с.

3. Теория электрических цепей: Методические указания к лабораторным работам / Рязан. гос. радиотехн. акад.; Сост.: С.М. Милюков, В.П. Рынин; Под ред. В.П. Рынина. Рязань, 2002. 16 с.,2004. 20 с. (№3282, №3624)

4. Электротехника и электроника: Методические указания к расчетно-графической работе / Рязан. гос. радиотехн. акад.; Сост. Г.В. Спивакова. Рязань, 2005. 16 с. (№3665)

5. М.Р. Шебес. Теория линейных электрических цепей в упражнениях и задачах. М.: Высшая школа, 1990. 528 с.

6. Матханов П.Н. Основы анализа электрических цепей. Нелинейные цепи: Учеб. для электротехн. спец. вузов. –2-е изд., перераб. и доп. –М.: Высш. шк., 1986. –352 с.

7. Каплянский А.Е. и др. Теоретические основы электротехники. Изд. 2-е. Учеб. пособие для электротехнических и энергетических специальностей вузов. –М.: Высш. шк., 1972. -448 с.

8. Теоретические основы электротехники. Т. 1. Основы теории линейных цепей. Под ред. П.А. Ионкина. Учебник для электротехн. вузов. Изд. 2-е, перераб. и доп. –М.: Высш. шк., 1976. –544 с.


Страницы: 1, 2, 3, 4, 5

рефераты
Новости