рефераты рефераты
Главная страница > Контрольная работа: Классический метод расчета переходных процессов в линейных цепях  
Контрольная работа: Классический метод расчета переходных процессов в линейных цепях
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Контрольная работа: Классический метод расчета переходных процессов в линейных цепях

(1) в (2):

(1)/(3):  , из (3)

Видно, что в данном случае свободная составляющая представляет собой затухающую во времени синусоиду. Такой переходной процесс называется колебательным или периодическим, и график его проще построить так: симметрично относительно принуждённой составляющей строим график амплитуды свободной составляющей (график огибающей процесса), дальше в график огибающей вписывают синусоиду с её начальной фазой и периодом свободных колебаний.

,  - коэффициент затухания,

 - частота свободных колебаний.

Рассматривать цепи более высокого порядка смысла нет, потому что у любого уравнения корни могут быть трёх видов, а для каждого типа корней мы свободную составляющую уже получили.

5. Временные характеристики цепей

Ранее мы рассматривали частотные характеристики, а временные характеристики описывают поведение цепи во времени при заданном входном воздействии. Таких характеристик всего две: переходная и импульсная.

Переходная характеристика

Переходная характеристика - h(t) - есть отношение реакции цепи на входное ступенчатое воздействие к величине этого воздействия при условии, что до него в цепи не было ни токов, ни напряжений.

Ступенчатое воздействие имеет график:

1(t) – единичное ступенчатое воздействие.


Иногда используют ступенчатую функцию, начинающуюся не в момент «0»:

Для расчёта переходной характеристики к заданной цепи подключают постоянный ЭДС (если входное воздействие – напряжение) или постоянный источник тока (если входное воздействие – ток) и рассчитывают заданный в качестве реакции переходный ток или напряжение. После этого делят полученный результат на величину источника.

Пример: найти h(t) для uc при входном воздействии в виде напряжения.

1) ,

2) ,

3) , ,

,

,

Пример: ту же задачу решить при входном воздействии в виде тока

1) ,

2) ,

3) , ,

,

,

Импульсная характеристика

Импульсная характеристика - g(t) – есть отношение реакции цепи на входное воздействие в виде дельта - функции к площади этого воздействия при условии, что до подключения воздействия в схеме не было ни токов, ни напряжений.

δ(t) – дельта-функция, дельта-импульс, единичный импульс, импульс Дирака, функция Дирака. Это есть функция:

Рассчитывать классическим методом g(t) крайне неудобно, но так как δ(t) формально является производной , то найти её можно из соотношения g(t)=h(0)δ(t) + dh(t)/dt.

Для экспериментального определения этих характеристик приходится действовать приближённо, то есть создать точное требуемое воздействие невозможно.

На вход падают последовательность импульсов, похожих на прямоугольные:

tф – длительность переднего фронта (время нарастания входного сигнала);

tи – длительность импульса;

К этим импульсам предъявляют определённые требования:

а) для переходной характеристики:

- tпаузы должно быть таким большим, чтобы к моменту прихода следующего импульса переходный процесс от окончания предыдущего импульса практически заканчивался;

- tи должно быть таким большим, чтобы переходный процесс, вызванный возникновением импульса, тоже практически успевал заканчиваться;

- tф должно быть как можно меньше (так, чтобы за tср состояние цепи практически не менялось);

- Xm должна быть с одной стороны такой большой, чтобы с помощью имеющейся аппаратуры можно было бы зарегистрировать реакцию цепи, а с другой: такой маленькой, чтобы исследуемая цепь сохраняла свои свойства. Если всё это так, регистрируют график реакции цепи и изменяют масштаб по оси ординат в Xm раз (Xm =5В, ординаты поделить на 5).

б) для импульсной характеристики:

tпаузы – требования такие же и к Xm – такие же, к tф требований нет (потому что даже сама длительность импульса tф должна быть такой малой, чтобы состояние цепи практически не менялось. Если всё это так, регистрируют реакцию и изменяют масштаб по оси ординат на площадь входного импульса .

Итоги по классическому методу

Основным достоинством является физическая ясность всех используемых величин, что позволяет проверять ход решения с точки зрения физического смысла. В простых цепях удаётся очень легко получить ответ.

Недостатки: по мере возрастания сложности задачи быстро нарастает трудоёмкость решения, особенно на этапе расчёта начальных условий. Не все задачи удобно решать классическим методом (практически никто не ищет g(t), и у всех возникают проблемы при расчёте задач с особыми контурами и особыми сечениями).

До коммутации , .

Следовательно, по законам коммутации uc1(0) = 0 и uc2(0) = 0, но из схемы видно, что сразу после замыкания ключа: E= uc1(0)+uc2(0).

В таких задачах приходится применять особую процедуру поиска начальных условий.

Эти недостатки удаётся преодолеть в операторном методе.

6. Расчет реакции линейной цепи на входное воздействие произвольного вида с применением временных характеристик цепи

Раньше мы рассматривали два вида входного воздействия:

1) xвх= δ(t)-на входе будет импульсная характеристика g(t);

2) xвх= 1(t)-переходная характеристика h(t).

При произвольном заданном виде входного воздействия, в линейной цепи тоже можно найти реакцию. Для этого годятся и g(t) и h(t) и передаточная функция H(p), но в зависимости от формы входного сигнала, сложности цепи и того математического аппарата, которым располагаешь, более удобно будет применить какую-то одну из этих характеристик.

Рассмотрим применение переходной характеристики h(t):

1) На входе действуют прямоугольным импульсом

Воспользуемся принципом наложения и представим этот импульс в виде двух скачков Um1(t) и -Um1(t-tu).

Если нам известна переходная характеристика на h(t), то реакция на каждый скачок записывается очень просто Umh(t) и -Umh(t-tu) (h(t)=1-e-t/τ).

Вся реакция определяется сложением этих двух графиков.

Т.е. для 0≤t<tu Uвых(t)=Umh(t), t≥tu Uвых(t)=Umh(t)–Umh(t-tu).

2) Входной сигнал – функция, которая в некоторые моменты времени изменяется скачком, а между этими моментами постоянно.

И в этом случае задача решается просто: раскладываем входной сигнал на совокупность скачков и записываем для каждого интервала времени свое выражение для реакции:

0≤t<10-3 xвых=5∙h(t)

10-3≤t<2∙10-3 xвых=5∙h(t)+10∙h(t-10-3)

t≥2∙10-3 xвых=5∙h(t)+10∙h(t -10-3) -18∙h(t -2∙10-3).

Все такие задачи решаются с помощью h(t).

1) Входной сигнал в некоторый момент времени имеет скачки, а между

этими моментами времени плавно изменяется по тому-то закону (или вообще плавно изменяется без скачков).

Представим себе, что этот сложный сигнал приближенно м.б. составлен из нескольких скачкообразных воздействий (первое воздействие имеет амплитуду xвх(0) и возникает в момент t=0, второе воздействие возникает в некоторый момент t1 и имеет амплитуду xвх(t1)-xвх(0)=∆xвх(t1), третий сигнал поступает в момент t2 и имеет амплитуду ∆xвх(t2) и т.д.). Значит можно написать, что для некоторого момента t:

Страницы: 1, 2, 3, 4, 5

рефераты
Новости