рефераты рефераты
Главная страница > Дипломная работа: Радиочастотная идентификационная метка на поверхностных акустических волнах  
Дипломная работа: Радиочастотная идентификационная метка на поверхностных акустических волнах
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Радиочастотная идентификационная метка на поверхностных акустических волнах

5)         Хорошая растворимость в травителе;

6)         Технологичность;

7)         Стабильность основных физико-химических свойств от партии к партии.

Дополнительными требованиями являются:

1)         Малое различие акустических сопротивлений материала металлизации и звукопровода;

2)         Низкая удельная плотность во избежание сильных отражений;

3)         Слабые дисперсионные свойства.

В таблице 2.3 указаны акустические и дисперсионные свойства выбранного в качестве материала звукопровода ниобата лития

Таблица 2.3 – Акустические и дисперсионные свойства ниобата лития среза YZ и материалов металлизации

Материал

Удельное электричес-

кое сопротивление ×106 Ом·см

Плотность ρ, г·см-3

Акустическое сопротивление Z, ×106, г·см-2с-1

Коэффициент дисперсии

γд

Ниобат лития - 4.7 16.4 +0.06
Алюминий 2,7 2,7 7,15
Ниобат лития - 4.7 16.4 -0,46
Серебро 1,63 10,5 15,2
Ниобат лития - 4.7 16.4 -1,05
Золото 2,3 19,3 22,0

При изготовления устройств на ПАВ для металлизации широко используются алюминий, серебро, золото, иногда медь с защитой никелем. В таблице 4 приведены акустические и дисперсионные свойства ниобата лития в сочетании с различными типами металлического покрытия.

Для фильтров на ниобате лития отражение за счет несоответствия акустических сопротивлений материалов звукопровода и покрытия минимальны при использовании серебра, но при этом велики дисперсионные искажения и увеличивается составляющая коэффициента отражения от границ электродов из за роста нагружающей массы. Дешевизна алюминия и возможность получения низкого сопротивления пленочных проводников, делает данный наиболее пригодным для нашего устройства.

2.2      Расчет основных элементов метки

2.2.1 Выбор приемо-передающего ВШП

Основным конструктивным элементом любого акустоэлектронного устройства на ПАВ является преобразователь. Наиболее простым и эффективным способом приема и возбуждения ПАВ является использование ВШП. Существует множество различных конструкций таких преобразователей. Наиболее оптимальным решением является однонаправленный ВШП, так как он обеспечивает распространение пакета ПАВ лишь в одном направлении, и тем самым потери на преобразование электромагнитного сигнала в поверхностные акустические волны минимальны. Рассмотрим типовые конструкции однонаправленных ВШП.

На рисунке 2.4 изображен однонаправленный ВШП, одна из половин которого смещена на половину длины волны и служит отражателями для обратной ПАВ. Основным достоинством данного преобразователя является высокочастотность. Поскольку для повышения эффективности отражения требуется большое количество электродов, этот тип преобразователей является узкополосным с большим уровнем боковых лепестков.

Решить эти проблемы позволяет модифицированный однонаправленный ВШП (рисунок 2.5). Однако верхняя граничная частота такого преобразователя ниже в 2 раза.


Рисунок 2.5 – Модифицированный однонаправленный ВШП

Эффективность возбуждения ПАВ зависит от ширины электродов, поэтому, изменяя ширину электродов вдоль направления распространения звуковой волны (рисунок 2.6), можно равномерно взвесить преобразователь в соответствии с заданной импульсной характеристикой. Этот метод взвешивания может рассматриваться как широтно-импульсная модуляция сигнала. Основным недостатком этого метода взвешивания является чувствительность к технологическим погрешностям и требование к высокой разрешающей способности фотолитографии при изготовлении. Кроме того, диапазон взвешивания амплитуд парциальных волн очень мал и не превышает 2,5:1, что существенно ограничивает класс реализуемых частотных характеристик.

Рисунок 2.6 – Однонаправленный ВШП со взвешиванием ширины электродов

Данный преобразователь обеспечивает однородность звукового пучка по апертуре.

Предлагается использовать следующий однонаправленный преобразователь (рисунок 2.7). Он обладает преимуществом предыдущего, но вместе с этим устраняет существенный недостаток – высокие требования к разрешающей способности фотолитографии, а следовательно и невозможность изготовления высокочастотного устройства из за наличия межэлектродных зазоров равных l/8. Это достигается тем, что в преобразователе, содержащем звукопровод, на рабочей поверхности которого расположены элементарные секции, содержащие противофазные электроды и отражающие электроды, ширины электродов первой фазы выбраны равными l/4 и l/2 соответственно и расположены с периодом 2l, а между ними расположены электроды противоположной фазы и отражающие электроды шириной l/4 с периодом 2l таким образом, что ближайшими электродами для них являются электроды первой фазы, все зазоры выполнены равными 3l/16, l - длина ПАВ на средней частоте преобразователя [13].

1 – Электроды первой фазы; 2 – электроды второй фазы; 3 – отражатель.

Рисунок 2.7 – Однонаправленный ВШП с внутренними отражателями.

Преобразователь содержит пьезоэлектрический электроды первой фазы 1 с ширинами электродов l/4 и l/2 соответственно с периодом 2l, между ними расположены электроды противоположной фазы 2 и отражающие электроды 3 с ширинами l/4 и периодом 2l. Межэлектродные зазоры 5 выполнены равными 3l/16.

При подаче электрического сигнала на противофазные электроды 1 и 2 в подложке возбуждаются ПАВ, которые распространяются в противоположные стороны от парциальных встречно-штыревых преобразователей (ВШП), образованных широким (l/2) и узким (l/4) электродами первой фазы 1 и электродом 2 противоположной фазы, находящимися между ними. ПАВ отражаются парциальными ВШП образованными узким и широким электродами первой фазы 1 и отражающим электродом 3, находящимся между ними. Расстояние между центрами отражающих парциальных ВШП, находящихся справа и слева от излучающего ВШП равны 7l/8 и 9l/8 соответственно. При отражении от ВШП с тремя штырями меняет ПАВ фазу на p/2. Тогда фаза отраженной справа ПАВ равна 3p, а слева - 4p, т.е. отраженная слева ПАВ находится в противофазе с излученной ПАВ, а справа – в фазе. Так как отражательные парциальные ВШП расположены с периодом 2l, то все отраженные ПАВ будут складываться в фазе и при некотором числе отражателей амплитуда ПАВ , находящихся в противофазе с излученными ПАВ станет близка к их суммарной амплитуде, что приведет к преимущественному излучению ПАВ влево, т.е. к однонаправленному режиму. Так как коэффициент отражения от отражательных парциальных ВШП с числом электродов равным трем (Nk2эфф<<w0CT, СТ – статическая емкость парциального ВШП, k2эфф –квадрат коэффициента электромеханическрой связи, w0=2pf0, f0 – средняя частота преобразователя) равен 4k2эфф/p, то число отражающих парциальных ВШП равно M³p/(4k2эфф).

2.2.2   Расчет основных параметров приемо-передающего ВШП

Для осуществления дальнейших расчетов необходимо задаться начальными параметрами и выбрать частоту акустического синхронизма ВШП.

Пусть минимальное расстояние между отражательными ВШП составляет 15мкм. Зная скорость распространения звука на подложке ниобата лития и квадрат коэффициента электромеханической связи, можно приближенно вычислить скорость распространения ПАВ на металлизированной поверхности:

k2=2ΔV/V=2(V-Vm)/V,

где V- скорость ПАВ на свободной поверхности; Vm –скорость ПАВ на металлизированной поверхности; k2 – квадрат коэффициента электромеханической связи.

Тогда согласно выражению (2.4):

Vm=V - k2V/2=3488-0.045*3488/2=3409,52(м/с)

Зная скорость распространения звуковой волны и минимальное расстояние между отражателями можно вычислить время задержки импульса:

τз=S/VПАВ=15*10-6/3409,52=4,40(нс),

где VПАВ – скорость звука на подложке с учетом металлизации (для ниобата лития VПАВ =3409,52(м/с).

Частоту акустического синхронизма будем вычислять исходя из соотношения:

f0 >>1/ (τз +τи)

где τи – длительность импульса.

В свою очередь необходимо выполнение условия, при котором τз>>τи. Предположим, что достаточным будет следующее соотношение τи =3τз. Тогда:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29

рефераты
Новости