рефераты рефераты
Главная страница > Курсовая работа: Комплексный анализ рыбной отрасли  
Курсовая работа: Комплексный анализ рыбной отрасли
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Комплексный анализ рыбной отрасли

3.2. Доработки магистральной модели

Неймановский луч, определяемый по формуле ,

выглядит на графике следующим образом.

Как видно из графика, Неймановский луч, определяемый как луч с наименьшим тангенсом угла, соответствует всего двум точкам, характеризующим равновесию производственных затрат и валового выпуска во времени. Это говорит о том, что существует возможность сделать модель более сбалансированной путем обеспечения постоянного во времени темпа роста выпуска продукции рыбной отрасли, зависящего от материальных затрат.


Глава 4

4.1. Построение модели Солоу

Для удобства исследования моделей экономической динамики рассматривают модели с агрегированными переменными. К ним относятся односекторные модели, в которых экономика на длительном периоде [О, Т] в каждой момент времени t  [О, Т] характеризуется набором переменных X, Y, К, L, I и С, выражающих со­ответственно объемы валовой продукции, конечной продукции, ОПФ, рабочей си­лы, инвестиций и непроизводственного потребления (без учета государственных расходов). Они связаны балансовыми соотношениями:

где a, 0 < a < 1, — коэффициент амортизационных затрат.

Подставляя последние соотношения в первое, получим односекторную модель экономической динамики

   t  [О, Т]

Если t принимает дискретные значения t = 0, 1, ..., Т, то уравнение модели запи­сывается в виде

Аналогом дискретной модели для непрерывного времени t  [О, Т]

явля­ется модель

где K = dK/dt. При этом переменную t обычно не записывают.

Уравнение связывает 3 переменных: X, К и С. Дальнейшие преобразования уравнения связаны с уменьшением числа переменных.

1) Пусть μ= 0, т.е. все инвестиции I полностью идут на прирост ОПФ без расходов на амортизацию. Если считать, что

то есть капитальные вложения пропорциональны приросту выпуска валовой про­дукции, где q > 0 называется капиталоемкостью прироста валовой продукции, то из  получим односекторную динамическую модель Леонтьева

2) Пусть в модели  переменная X определяется с помощью производст­венной функции, то есть X=F(K,L) с выполнением для F всех требований для произ­водственных функций, a L - экзогенная (управляющая) переменная с постоянным темпом роста.

Отсюда следует, что , где Lo = L{0).

Для удобства изучения модели перейдем к относительным переменным:

x=X/L

—  производительность труда;

k = K/L

— фондовооруженность;

с=С/L

— удельное потребление.

Все эти величины являются функциями времени t. Подставляя эти выражения, получим

Сокращая все слагаемые на L, найдем

Далее, считая X=F(K,L) линейной однородной функцией, получим

или x=f(k).

При этом f(k) удовлетворяет следующим условиям:

1) f(0)=0;

2) f”(k)>0;

3) f”(k)<0;

4) f(k)→0 при k→0;

Например, этим условиям удовлетворяет степен­ная функция вида Кобба-Дугласа  (b>0, 0<α<1).

Неоклассическая производственная функция.

Подставляя x=f(k) в , получим открытую динамическую модель Р. Солоу

в форме дифференциального уравнения 1-го порядка со свободной (управляющей) переменной С.

Преобразуем открытую модель Солоу в замкнутую, исключив переменную С. Для этого зададим постоянную норму (долю) накопления s = I/Y и обозначим через u= С/У норму (долю) потребления, связанную с s зависимостью s + u = 1, что следует из . Отсюда следует

Получим замкнутую динамическую модель Солоу

в форме дифференциального уравнения 1-го порядка с управляющей переменной s. Так как правая часть уравнения непрерывна, то решение k(t) уравнения существует.

Если из уравнения найти k(t), то задав L(t), найдем

, , ,

и ,

то есть получим все переменные, характеризующие экономический процесс.

Приступим к построению динамической модели Солоу. Для начала определим экзогенные переменные.

Это  Lo=14600.

Тогда, при условия постоянного темпа роста, можно составить таблицу:

Год L
1 314
2 362
3 418
4 482
5 556
6 642
7 740

Следующая переменная, которую можно вычислить по формуле: k=K/L – это фондовооруженность.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25

рефераты
Новости