рефераты рефераты
Главная страница > Курсовая работа: Средние величины и показатели вариации  
Курсовая работа: Средние величины и показатели вариации
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Средние величины и показатели вариации

Рис. 2 . Кумулята ряда распределения работников по стажу работы

Медиана также важна в статистической работе. В некоторых случаях (скажем, при контроле качества продукции) медиану используют вместо средней арифметической. При исчислении последней учитываются все значения осредняемого признака, в том числе и исключительные, а величина медианы не зависит от того, какие варианты имеются в начале и в конце вариационного ряда. Получение средней арифметической всегда связано с проведением расчетов; нахождение медианы в первичных рядах не требует никаких расчетов.

Медиана обладает важными свойствами: сумма отклонений вариант от медианы по модулю всегда меньше, чем сумма отклонений вариант от любой другой величины, т.е.

Это свойство медианы широко используется при проектировании расположения пунктов массового обслуживания – бензоколонок, ссыпных пунктов, школ, водозаборных колонок и т.д. Например, если в определенном квартале населения предполагается соорудить водозаборную колонку, то расположить ее целесообразнее в такой точке, которая делит пополам не длину квартала, а число жителей.

Подобно медиане определяются квартили (варианты, делящие ряд на четыре равные части), квинтили (варианты, делящие ряд на пять равных частей) и децили (варианты, делящие ряд на десять равных частей).

Эти характеристики широко используются в социальной статистике. Например, при изучении дифференциации населения по размеру среднедушевого дохода.

Виды и формы степенных средних

Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по первичным (не сгруппированным) данным и имеет следующую общую формулу:

,

где  - индивидуальные значения признака (варианты);

 - число вариант;

 - показатель степени.

Взвешенная средняя считается по вторичным (сгруппированным) данным и имеет общую формулу:

где  - веса средней, т.е. значения признака, участвующего в определении экономического содержания рассчитываемого показателя.

В зависимости от того, какое значение принимает показатель степени , различают следующие виды степенных средних (см. табл. 1).

Таблица 1

Вид степенной средней

Показатель степени

Формула расчета
Простая Взвешенная
Арифметическая 1

Квадратическая 2

Гармоническая -1

Геометрическая 0

где

Если рассчитать все виды средних для одних и тех же исходных данных, то значения окажутся неодинаковыми. Здесь действует правило мажорантности средних: чем выше показатель степени, тем больше по величине и сама средняя:

И значит, если мы подберем неправильно вид средней, то рискуем или завысить, или занизить истинную среднюю величину данного признака.

Каждый показатель имеет свое, только ему присущее экономическое содержание. В общем виде количественное исходное соотношение, для исчисления средней величины (ИСС) будет следующим:

                                        Объем варьирующего признака

Средняя величина (ИСС)= --------------------------------------------

Объем совокупности

При выборе вида и формы средней величины надо исходить из экономического содержания показателя, среднюю величину которого вычисляем и его взаимосвязи с общим объемом варьирующего признака. Общий объем варьирующего признака не должен изменяться при замене индивидуальных значений признака средней величиной – это определяющее свойство средней. Оно является в статистике критерием для подбора вида средней.

2. Средняя арифметическая и условия ее применения

Средняя арифметическая применяется в тех случаях, когда объем варьирующего признака всей совокупности образуется как сумма значений этого признака у ее отдельных единиц.

Средняя арифметическая представляет собой ту величину признака, которую имела бы каждая единица совокупности, если бы общий итог признака был равномерно распределен между всеми единицами совокупности. Используется две формы средней арифметической. Для первичных данных – простая средняя арифметическая  (4), для вторичных данных – средняя арифметическая взвешенная

 (5).

Среднюю арифметическую целесообразно использовать в тех случаях, когда разрыв между минимальным и максимальным значениями признака достаточно невелик (они не отличаются друг от друга в несколько десятков или сотен раз.

Свойства средней арифметической.

1. Произведение средней варианты на сумму частот всегда равно сумме произведения вариант на их частоты

.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9

рефераты
Новости