рефераты рефераты
Главная страница > Учебное пособие: Цифровая схемотехника  
Учебное пособие: Цифровая схемотехника
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Цифровая схемотехника

Под действием возмущающих воздействий объект выходит из нормального состояния (режима), а САУ возвращает его в требуемый (нормальный) режим работы. Процесс управления протекает в реальном масштабе времени, то есть со скоростью, определяемой характером физических процессов. Если управляющие воздействия запаздывают во времени либо чрезмерны, то может возникнуть неустойчивый режим работы системы, при котором координаты объекта могут принять недопустимые значения и либо сам объект, либо отдельные устройства системы выйдут из строя - возникнет аварийный режим. Поэтому в теории САУ основными являются проблемы обеспечения устойчивости и точности управления.

Большинство из перечисленных преобразований могут быть выполнены с помощью цифровых микроэлектронных устройств. Полностью цифровым является УУ, когда оно строится на основе управляющих микроЭВМ либо на цифровых микросхемах.

На цифровых микросхемах выполняются цифровые датчики физических величин, а так же частично аналого-цифровые и цифро-аналоговые преобразователи сигналов.

В1.2. Системы передачи информации (СПИ)

При увеличении расстояния между ИИУ и УУ (рис. В1), а также между УУ и ИУ, возникает задача передачи информации. Необходимость передачи информации на значительные расстояния возникает не только в пространственно развитых системах автоматического управления и контроля, но и в системах других видов связи (телеграфной, телефонной, телефаксной и др.). Кроме того, необходимость передачи информации возникает в вычислительных системах, системах передачи данных, телемеханических системах и т. д. Эта задача осложняется тем, что в процессе передачи по линиям связи искажаются  параметры сигналов и это, в свою очередь, может привести к искажению информации - к снижению её верности (вероятности правильного её приёма). Искажение же сигналов обусловлено действием помех, возникающих в линиях связи. Помехи, как правило, имеют случайный характер и по своим параметрам могут и не отличаться от параметров сигналов. Поэтому они "способны" искажать сигналы и даже "воспроизводить" информацию - трансформировать передаваемое сообщение. Последнее самое нежелательное событие в передаче информации.

Чтобы обеспечить высокую верность и максимальную скорость (эффективность) передачи информации, требуются дополнительные преобразования сигналов и специальные методы их передачи.

К таким преобразованиям относятся кодирование и обратная процедура - декодирование информации (и сигналов). Кодирование - есть процедура преобразования сообщения в сигнал. При этом преобразования осуществляются по определённым правилам, совокупность которых называется кодом.

Кодирование информации выполняется на передающей стороне, а декодирование на приёмной. Различают помехоустойчивое кодирование и эффективное. Цель помехоустойчивого кодирования - построить (сформировать) сигнал, менее подверженный действию помех, придать ему такую структуру, чтобы возникшие в процессе передачи ошибки на приёмной стороне можно было бы обнаружить либо исправить. И, тем самым, обеспечить высокую верность передачи.

Цель эффективного кодирования - обеспечить максимальную скорость передачи информации, так как её ценность во многом определяется, насколько своевременно она получена. Согласно этому  требованию закодированное сообщение должно нести требуемое количество информации и, в то же самое время, иметь минимальную длину, чтобы на передачу потребовалось минимум времени.

Передача сигналов (и информации) осуществляется по каналам связи. Канал связи - это тракт (путь) независимой передачи сигналов от источника к соответствующему приёмнику (получателю) информации. Каналы связи образуются техническими средствами - каналообразующей аппаратурой - и  так же, как и линии связи подвержены влиянию помех.

Одной из основных решаемых в СПИ задач является задача создания требуемого числа каналов связи. Эффективность и помехоустойчивость передачи во многом определяется используемыми каналами связи. Под помехоустойчивостью понимают способность системы (сигнала, кода) правильно выполнять свои функции в условиях действия помех.

Обычно одну и ту же систему можно использовать для передачи информации от многих источников к соответствующему числу приёмников (получателей). Поэтому образование требуемого числа каналов с необходимой помехозащищённостью возлагается на устройство связи. При этом в устройстве связи могут выполняться следующие преобразования: модуляция и демодуляция сигналов; усиление передаваемых в линию и принимаемых из линии связи сигналов; ограничение по уровню и частотному спектру сигналов и некоторые другие.

В зависимости от области использования (применения) СПИ возникает необходимость в дополнительных преобразованиях таких, как преобразование формы сигналов, их физической природы, нормирование параметров поступающих извне сигналов и сигналов, выдаваемых системой на внешние устройства; временное хранение передаваемых в канал связи и выдаваемых системой сигналов.

Перечисленные преобразования предопределяют функциональный состав передающей и приёмной аппаратуры систем передачи информации (рис.В2).


Как видно по схеме, передача осуществляется в одном направлении - слева направо. Устройство ввода и первичного преобразования информации (УВПИ) преобразует поступающие от источников информации сигналы в унифицированные «первичные» сигналы, которые невозможно непосредственно передать на большие расстояния. Обычно, эти унифицированные сигналы представляют собой напряжение постоянного тока с фиксированными значениями по уровню. В блоке УВПИ первичные сигналы сохраняются на время передачи (в буферном запоминающем устройстве), после чего стираются из памяти. Кодирующее устройство (КУ) преобразует первичные сигналы в кодированные сигналы, имеющие определённую структуру и формат, допускающие возможность передачи их (сигналов) на большие расстояния («телесигналы»). Как правило, это устройство является комбинационным, хотя в ряде случаев может быть выполнено и последовательностным (многотактным). Здесь реализуются логические и арифметические операции процедур кодирования.

Основным назначением устройства связи (рис. В2) является создание или организация каналов связи на предоставленной линии связи. Линия связи - это материальная среда между передатчиком (Прд) и приёмником (Прм) системы. На рисунке условно показана двухпроводная линия электрической связи. Однако могут использоваться радиолинии и волоконно-оптические линии связи и другие. В зависимости от типа линии в Прд и Прм выполняются различные преобразования сигналов с целью согласования их параметров и характеристик с параметрами и характеристиками линии связи и преобразования, направленные на повышение помехоустойчивости сигналов.

На приёмной стороне принятые из линии связи кодированные сигналы вновь преобразуются декодирующим устройством (ДКУ) в первичные сигналы. При этом в принятых сигналах процедурами декодирования обнаруживаются и могут исправляться ошибки и, тем самым, обеспечивается требуемая верность передачи информации. А выходные преобразователи (ВП) преобразуют эти первичные сигналы в форму и вид (физическую природу), которую могут воспринимать получатели информации.

Следует отметить, что большинство функциональных «узлов» и «блоков», показанных на рис.В2, могут быть выполнены на цифровых микросхемах. Поэтому системы передачи информации, как правило, являются цифровыми.

В1.3. Системы обработки информации

(вычислительные системы)

Перечисленные выше типовые задачи могут быть решены и формализованы математическими и логическими методами. В свою очередь названные методы оперируют простейшими операциями (арифметическими или логическими), выполнением которых над некоторыми «исходными данными» получается новый результат, ранее неизвестный. Эта общность методов решения разнообразных задач по обработке информации позволила создать отдельный класс устройств и систем, целевым назначением которых (первоначально) была автоматизация вычислительных процедур - электронные вычислительные машины (ЭВМ). На современном этапе развития вычислительной техники ЭВМ «превратились» в компьютеры, на основе которых строятся современные компьютерные системы обработки и передачи информации. Обобщённая структурная схема некоторой вычислительной системы приведена на рис.В3.

Подпись: Рис.В3. Обобщённая структурная схема вычислительной системы

Обрабатываемые данные предварительно через устройство ввода Увв поступают на запоминающее устройство ЗУ, где сохраняются на всё время обработки. В этом же ЗУ хранится и программа обработки поступающей информации.

Программа работы системы так же, как и «данные», хранятся в запоминающем устройстве в виде многоразрядных двоичных чисел, записанных в ячейки ЗУ по определённым адресам (адресам ячеек памяти). Двоичные числа, совокупность которых отображает программу обработки данных, структурированы на определённое число частей, каждая из которых имеет определённое назначение. В простейшем случае имеются следующие части: 1) код операции, которую надо выполнить с двумя двоичными числами, отображающими значения «данных» и называемыми «операндами»; 2) адрес первого операнда; 3) адрес второго операнда. Совокупность этих частей образует «команду».

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

рефераты
Новости