рефераты рефераты
Главная страница > Дипломная работа: Разработка программного обеспечения для голосового управления трехмерными моделями функционирования промышленных роботов  
Дипломная работа: Разработка программного обеспечения для голосового управления трехмерными моделями функционирования промышленных роботов
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Разработка программного обеспечения для голосового управления трехмерными моделями функционирования промышленных роботов

Рис. 1.1 – Представление речевого сигнала

Для удобства даже при рассмотрении дискретных сигналов иногда на графике будет изображается непрерывная функция, которая может рассматриваться как огибающая последовательности отсчетов. При изучении систем цифровой обработки речи требуется несколько специальных последовательностей. Единичный отсчет или последовательность, состоящая из одного единичного импульса, определяется как

 (1.1)

Последовательность единичного скачка имеет вид

 (1.2)

Экспоненциальная последовательность

 (1.3)

Если а - комплексное число, т. е. , то

 (1.4)

Если z=1 и , х(n) - комплексная синусоида; если . х(n) -действительное; если z<1 и , то х(n) - экспоненциально-затухающая осциллирующая последовательность. Последовательности этого типа часто используются при представлении линейных систем и моделировании речевых сигналов.

Обработка сигналов включает преобразование их в форму, удобную для дальнейшего использования. Таким образом, предметом интерес представляют дискретные системы или, что то же самое, преобразования входной последовательности в выходную. Подобные преобразования далее изображаются на структурных схемах. Многие системы анализа речевых сигналов разработаны для оценивания переменных во времени параметров по последовательности мгновенных значений речевого колебания. Подобные системы имеют многомерный выход, т. е. одномерная последовательность на входе, представляющая собой речевой сигнал, преобразуется в векторную последовательность на выходе.

При обработке речевых сигналов особенно широкое применение находят системы, инвариантные к временному сдвигу. Такие системы полностью описываются откликом на единичный импульс, Сигнал на выходе системы может быть рассчитан по сигналу на входе и отклику на единичный импульс h(n) с помощью дискретной свертки

 (1.5a)

где символ * обозначает свертку. Эквивалентное выражение имеет вид

 (1.5б)

Линейные системы, инвариантные к временному сдвигу, применяются при фильтрации сигнала и, что более важно, они полезны как модели речеобразования.

Анализ сигналов и расчет систем значительно облегчаются при их описании в частотной области. В этой связи полезно кратко остановиться на представлении сигналов и систем в дискретном времени с использованием преобразования Фурье и z-преобразования [1].

1.1.1 Прямое и обратное г-преобразование

Прямое и обратное г-преобразование последовательности определяется двумя уравнениями:


 (1.6a)

  (1.6б)

Прямое z-преобразование х(n) определяется уравнением (1.6а). В общем случае Х(z) - бесконечный ряд по степеням z-1; последовательность х(n) играет роль коэффициентов ряда. В общем случае подобные степенные ряды сходятся к конечному пределу только для некоторых значений z. Достаточное условие сходимости имеет вид

  (1.7)

Множество значений, для которых ряды сходятся, образует область на комплексной плоскости, известную как область сходимости. В общем случае эта область имеет вид [2]

  (1.8)

1.1.2 Преобразование Фурье

Описание сигнала в дискретном времени с помощью преобразование Фурье задаётся в виде

 (1.9a)

 (1.9б)

Эти уравнения представляют собой частный случай уравнений (1.6а,б).

Преобразование Фурье получается путём вычисления z -преобразования на единичной окружности, т. е. подстановкой . Частота  может быть интерпретирована как угол на z - плоскости. Достаточное условие существования преобразования Фурье можно получить, подставляя в (1.7)

 (1.10)

Важная особенность преобразования Фурье последовательности состоит в том, что оно является периодической функцией со с периодом 2к. С другой стороны, поскольку  представляет собой значение Х(z) на единичной окружности, оно должно повторяться после каждого полного обхода этой окружности, т. е. когда со изменится на  рад [1].

1.1.3 Дискретное преобразование Фурье

Как и в случае аналоговых сигналов, если последовательность периодическая с периодом N, т. е.

 (1.11)

то х(n) можно представить в виде суммы синусоид, а не в виде интеграла. Преобразование Фурье для периодической последовательности имеет вид

 (1.12а)

 (1.12б)


Это точное представление периодической последовательности. Однако, основное преимущество данного описания заключается в возможности несколько иной интерпретации уравнений (1.12). Рассмотрим последовательность конечной длины х(n), равную нулю вне интервала B этом случае z-преобразование имеет вид

 (1.13)

Если записать X(z) в N равноотстоящих точках единичной окружности, т. е. , k= 0, 1,…,N-1, то получим

 (1.14)

Если при этом построить периодическую последовательность в виде бесконечного числа повторений сегмента х(n),

 (1.15)

то отсчеты (), как это видно из (1.12а) и (1.14), будут представлять собой коэффициенты Фурье периодической последовательности х(n) в (1.15). Таким образом, последовательность длиной N можно точно описать с помощью дискретного преобразования Фурье (ДПФ) в виде

 (1.16)


 (1.17)

Следует иметь в виду, что все последовательности при использовании ДПФ ведут себя так, как если бы они были периодическими функциями, т. е. ДПФ является на самом деле представлением периодической функции времени, заданной (1.15). Несколько иной подход при использовании ДПФ заключается в том, что индексы последовательности интерпретируются по модулю N. Это следует из того факта, что если х(n) имеет длину N, то

Введение двойных обозначений позволяет отразить периодичность, присущую представлению с помощью ДПФ. Эта периодичность существенно отражается на свойствах ДПФ. Очевидно, что задержка последовательности должна рассматриваться по модулю N. Это приводит, например, к некоторым особенностям выполнения дискретной свертки.

Дискретное преобразование Фурье со всеми его особенностями является важным способом описания сигналов по следующим причинам: 1) ДПФ можно рассматривать как дискретизированный вариант z -преобразования (или преобразования Фурье) последовательности конечной длительности; 2) ДПФ очень сходно по своим свойствам (с учетом периодичности) с преобразованием Фурье и z-преобразованием; 3) N значений Х(k) можно вычислить с использованием эффективного (время вычисления пропорционально NlogN) семейства алгоритмов, известных под названием быстрых преобразований Фурье (БПФ).

Дискретное преобразование Фурье широко используется при вычислении корреляционных функций, спектров и при реализации цифровых фильтров, а также часто используется и при обработке речевых сигналов [1-5].

1.1.4 Спектральный анализ

Спектральный анализ – это метод обработки сигналов, который позволяет выявить частотный состав сигнала. Поскольку анализируемые сигналы во многих случаях имеют случайный характер, то важную роль в спектральном анализе играют методы математической статистики. Частотный состав сигналов определяют путем вычисления оценок спектральной плотности мощности (СПМ). Задачами вычисления СПМ являются обнаружение гармонических составляющих в анализируемом сигнале и оценивание их параметров. Для решения указанных задач требуется соответственно высокая разрешающая способность по частоте и высокая статистическая точность оценивания параметров. Эти два требования противоречивы. Аргументы в пользу выбора высокого разрешения или высокой точности оценки СПМ зависят от того, что интересует исследователя: устойчивые оценки в пределах всего диапазона частот или высокая степень обнаруживаемости периодических составляющих.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21

рефераты
Новости