рефераты рефераты
Главная страница > Дипломная работа: Организация интеллектуальной сети в г. Кокшетау на базе платформы оборудования Alcatel S12  
Дипломная работа: Организация интеллектуальной сети в г. Кокшетау на базе платформы оборудования Alcatel S12
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Организация интеллектуальной сети в г. Кокшетау на базе платформы оборудования Alcatel S12

Методы светотехнических расчетов.

Основой любой осветительной установки являются электрические источники света. Электрическим источником света называют устройство, предназначенное для превращения электрической энергии в видимое излучение. По физической природе преобразования электрической энергии источники света делятся на тепловые и газоразрядные.

Все многообразие применяемых способов расчета освещения сводится к двум принципиально различным методам: точечному и методу коэффициента использования светового потока [24].

Метод коэффициента использования светового потока предназначен для определения средней горизонтальной освещенности с учетом отражения светового потока от поверхностей пола, потолка и стен помещения. Применение этого метода целесообразно во всех случаях, когда расчет ведется на среднюю освещенность, то есть для расчета общего равномерного освещения производственных, вспомогательно-бытовых и административно-конторских помещений.

Метод коэффициента использования получил наибольшее распространение в практике проектирования, так как позволяет быстро и с достаточной степенью точности определить необходимый световой поток лампы, исходя из размеров помещения и разряда зрительной работы, выполняемой в этих помещениях:

 (9.22)

где Ф - расчетный световой поток лампы, обеспечивающий уровень нормируемой освещенности, лм; Ен - минимальная нормируемая освещенность, в соответствии с разрядом зрительной работы, выполняемой в данном помещении (таблица 2.1), лк; S - освещаемая площадь, м2; Кч - коэффициент запаса, зависящий от типа ламп и запыленности помещений; определяется по таблице 2.4; Z - коэффициент, учитывающий неравномерность освещения; представляет собой отношение средней освещенности к минимальной: Z=Ecp/EMИH, для ламп накаливания и ДРЛ Z=l,15, для люминесцентных ламп Z= 1,1; - коэффициент использования светового потока (таблицы 2.19 и 2.20); псв - число светильников, установленных в помещении; пл - число ламп в светильнике [25].

Коэффициент использования светового потока  показывает, какая часть светового потока светильника падает на рабочую поверхность. Величина коэффициента  зависит от значений коэффициентов отражения потолка рпт, стен рст, расчетной поверхности рр и индекса помещения i.

Ориентировочные значения коэффициентов отражения приведены в таблице 2.18. Индекс помещения i определяют по формуле [25]:


 (9.23)

где А и В -длина и ширина помещения, м; hp - высота подвеса светильников над расчетной поверхностью, м;

 (9.24)

где hn - высота рабочей поверхности, м; hc - свес светильника, то есть расстояние от потолка до лампы, м.

Высота рабочей поверхности зависит от характера работ, выполняемых в помещении (таблица 2.21). Свес для ламп накаливания обычно равен 0,5-0,7 м, для люминесцентных ламп 0,1-0,5 м [25].

По рассчитанному значению светового потока Ф и напряжению электрической сети выбирают ближайшую стандартную лампу (таблицы 2.14, 2.16, 2.17), световой поток (Фл) которой не должен отличаться от расчетного, больше чем на (-10 - +20)%. При невозможности выбора лампы с таким отклонением светового потока корректируется либо число ламп в светильнике, либо число светильников [25].

Если число светильников неизвестно, то, преобразуя формулу (9.22) относительно псв, можно получить уравнение для определения числа светильников, ориентируясь на световой поток Фл, какой-то определенной лампы [25]:

 (9.25)

Расположение светильников определяет экономичность и качество освещения, а также удобство эксплуатации. Светильники с лампами накаливания и ДРЛ располагают обычно по вершинам квадратных, прямоугольных, ромбовидных или треугольных полей с отношением сторон не более 1,5. Светильники с люминесцентными лампами рекомендуется устанавливать рядами, параллельно длинной стороне помещения или стены с окнами.

Для различных типов светильников определены наивыгоднейшие отношения расстояния L между светильниками к высоте подвеса светильника над расчетной поверхностью =L/hp. Наивыгоднейшие значения , в зависимости от типа кривой силы света, приведены в таблице 2.22. Следует отметить, что все светильники люминесцентных ламп, приведенные в таблице 2.20, имеют кривую силы света типа Д. Светильники ламп ДРЛ - кривые силы света типа Г или К. Светильники ламп накаливания ППД - типа Д, Ск - 3000 - типа Л, НСПО9 - типа Г [25].

Расстояние от крайних светильников до стены принимается в пределах (0,3-0,5)L, в зависимости от наличия вблизи стен рабочих мест. Причем величина L, найденная по  (исходя из кривой силы света), является оптимальной, но отнюдь не обязательной. Главное при размещении светильников обеспечить равномерное освещение помещения.

В процессе проведения расчетов освещения люминесцентными лампами возможно получение различных ситуаций при сопоставлении суммарной длины псв светильников с длиной помещения:

1)  суммарная длина светильников превышает длину помещения - не обходимо увеличить число рядов светильников или использовать более мощные лампы, что позволит снизить число светильников;

2)  суммарная длина светильников равна длине помещения - установка непрерывного ряда светильников [24];

3)  суммарная длина светильников меньше длины помещения - прини мается ряд с равномерно распределенными разрывами (исходя из величины ) между светильниками.

Таким образом, на основе технико-экономических сопоставлений между несколькими вариантами выбирают лучший.

Произведем расчет общего освещения автозала АТС. Размер помещений представлен на рисунке 9.3. Высота помещений Н=3,2 м. Для освещения использовать люминесцентные лампы, установленные в двухламповые светильники ЛСП 01-2х40. Потолок и стены в помещениях побелены.

1) Расчет помещения АТС, А=10 м, В=7 м. Согласно таблице 2.21 для помещения АТС при освещении люминесцентными лампами нормативная освещенность Ен=300 лк. Поскольку у нас стоит задача общего освещения помещения, то примем высоту расчетной поверхности hn=0,8 м. Свес для люминесцентных ламп hc =0,l м. По формуле 9.24 определим высоту подвеса светильников над расчетной поверхностью:

Индекс помещения (формула 9.23):

По таблице 2.18 для побеленного потолка и стен коэффициенты отражения рпт=0,1ч рст=0,5. По индексу помещения i=1,79 и коэффициентам отражения для светильников ЛСП 01-2х40 «Сигма-4», по таблице 2.20 методом интерполяции определяем коэффициент использования светового потока =0,534 [25].

Поскольку светильники люминесцентных ламп ЛСП 01-2х40 «Сигма-4» имеют кривую силы света типа Д (=1,4, таблица 2.22), то зная hр, определим оптимальное расстояние между светильниками [25]:


 (9.26)

Исходя из размеров помещения 10x7 и величины Lопт, примем первоначально схему размещения — 2 ряда по 3 светильника в каждом, параллельно длинной стороне А.

По таблице 2.4 коэффициент запаса К3=1,5. Для люминесцентных ламп коэффициент неравномерности освещения Z=l,l. Используя полученные значения коэффициентов, по формуле 9.22 определим расчетный световой поток лампы [25]:

По таблице 2.16 выбираем для использования лампу ЛБ-80 со световым потоком Фл=5220 лм.

Определим фактическую освещенность:

 (9.27)

Поскольку фактическая освещенность отличается от нормативной на 3,5%, то окончательно принимаем для установки в помещении АТС шесть двухламповых светильников ЛСП 01-2х40 «Сигма-4» с лампами ЛБ-80.

Мощность осветительной установки Роу составит:


 (9.28)

Проведем корректировку расстояния между светильниками, Обеспечивающую равномерное освещение всего помещения:

 (9.29)

 (9.30)

Нанесем светильники на план-схему (рисунок 9.3). Очевидно, что LA И LB отличаются от Lonr для светильников ЛСП 01-2х40 «Сигма-4» менее, чем на 10%.

 

9.6 Создание оптимальных условий труда оператора в автоматизированной системе управления

Автоматизация и компьютеризация систем связи привели к коренному изменению средств и характеристик трудовой деятельности, а следовательно, и условий труда. Труд облегчается, оздоровляются его условия, так как он переходит в сферу операторской деятельности, связанную с управлением и контролем за объектом (сеть связи) на основании модели сети и внешней обстановки. Однако, автоматизация и компьютеризация производства может иметь и определенные отрицательные социальные последствия, так как предъявляются повышенные требования к психофизиологическим возможностям человека-оператора он отвечает за эффективность функционирования системы, в том числе и в экстремальных ситуациях. Кроме того, для операторской деятельности характерным является снижение двигательной активности в процессе труда, что может повлиять на здоровье работающих. Поэтому, в условиях современного производства возникла задача согласования конструкции технической системы и условий их функционирования с психофизиологическими возможностями работающего человека (т.е. достижения эргономичности рабочего места). Конструкция рабочего места должна обеспечивать быстроту, безопасность, простоту и экономичность технического обслуживания, полностью отвечать функциональным требованиям и условиям эксплуатации. В тоже время рабочее место оператора АСУ (автоматизированная система управления) должно обеспечивать оптимальные условия труда, которые подразумевают [25]:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40

рефераты
Новости