рефераты рефераты
Главная страница > Дипломная работа: Особенности термического режима рек  
Дипломная работа: Особенности термического режима рек
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Особенности термического режима рек

Другим фактором нарушения строго широтного распределения Qr являются горные области, которым свойственен особый характер распределения солнечной радиации. Для них картографические обобщения изменчивости величины Qr отсутствуют, так как влияние орографического фактора чрезвычайно разнообразно и очень изменчиво в плане, что создает трудности в измерениях на метеостанциях и обобщении этих данных. Рельеф оказывает влияние на температуру воды в реках вследствие орографического снижения.

Она уменьшается с высотой на 0,60С на каждые 100 м подъема и повышается на 10С на 100 м, когда воздух опускается с гор в долины (Хромов, Петросянц, 2001). Некоторое влияние на этот процесс оказывают и отличия в распределении солнечной радиации на склонах разной экспозиции, особенности питания рек в предгорьях и на равнинных участках. Большие уклоны определяют повышенные скорости течения, интенсивное перемешивание воды в реках. Это приводит к увеличению скорости теплообмена с окружающей средой (атмосферой и дном), а также к относительной однородности температуры воды в поперченном сечении.

Высоту местности можно относить к региональным и к местным факторам формирования температурного режима рек. Зависимость температуры воды в реках от высоты местности (рис. 2.6) отражает влияние совокупности факторов, характерных для территории, по которой она протекает. Она изменятся даже для небольших возвышенностей. Например, для Приволжской и Смоленско-Московской возвышенностей температура воды зависит от двух факторов – от расстояния до истока и от высоты местности. На одной широте и при разной высоте разность температуры воды может достигать 10–150С, что является обычной ситуацией для рек Средней Азии и Кавказа (Соколова, 1951).

Зональный фактор изменения температуры воды связан не только распределением суммарной радиации. Низкая относительная влажность в Средней Азии приводит к большим потерям тепла на испарение, что может снижать температуру воды (Соколова, 1951).

Важным фактором изменения температуры речной воды бассейнового масштаба, является влияние синоптических условий и отдельных воздушных масс на тепловое состояние рек. На реках разного размера оно выражается по-разному: крупные атмосферные вихри, определяя прохождение теплых и холодных воздушных масс, оказывают влияние на температуру воды малых рек, участков крупных и средних рек. Чем больше площадь водосбора, тем больше число воздушных масс, которые оказывают воздействие на тепловое состояние рек. Таким образом, температура воды в малых реках и их бассейнах целиком определяется чаще всего какой-либо одной воздушной массой, тогда как температура средних и крупных рек и различных частей их бассейнов формируется под влиянием совокупности разнородных воздушных масс.

Синоптические факторы определяют температуру воды вследствие облачности и изменения притока Qr днем и ночью. Днем температура воды повышается вследствие интенсивного притока солнечной радиации, а ночью – понижается, так как теплой поток от водной массы к атмосфере преобладает. При наличии сплошной облачности суточный ход температуры воды сильно сглажен по сравнению с ясной погодой. Это связано с регулированием притока радиации облачностью – вода нагревается только за счет рассеянной радиации. Ночью облачность предупреждает и охлаждение водной массы, вследствие усиления парникового эффекта и повышения температуры воздуха, связанного с температурой воды уравнением (2.14).

К бассейновым факторам изменения температуры воды относятся факторы, влияющие на ее величину в бассейнах малых или на участках больших и средних рек. Одним из этих факторов является размер реки. Его влияние тесно связано с воздействием синоптических условий, формирующих тепловой баланс на верхней поверхности воды. При равной скорости теплообмена на границе «вода-воздух» в соответствии с формулой (2.5) изменение температуры воды будет больше в том водном объекте, который имеет меньший объем. Однако, эта простая закономерность требует уточнения.

Объем воды на данном участке реки приблизительно равен произведению средней глубины(h), средней ширины реки (B) и длины участка (l). Удельная (на единицу площади) величина теплообмена с атмосферой при одинаковых синоптических условиях равна для малой и большой рек. Количество тепла, поступающего к объему воды на участке реки за единицу времени, зависит только от удельного теплообмена на поверхности реки и от средней глубины реки. Чем меньше средняя глубина реки, тем быстрее она реагирует на изменение атмосферных условий и, наоборот, чем больше средняя глубина реки, тем изменчивость температуры воды в реке меньше. Большая средняя глубина соответствует и большим расходам воды. Поэтому крупные реки имеют меньшую изменчивость температуры воды за единицу времени, по сравнению с малыми реками. Изменение температуры воды в малой реке за сутки может достигать нескольких градусов (до 90С), а на крупных реках – 1–20С (Соколова, 1951).

На рис. 2.7 приведен график, характеризующий изменение температуры в течение года в близких природных условиях на реках различного размера. Река Емца имеет площадь водосбора 13400 км2 (средняя река), а Онега – 55900 км2 (крупная река). Как видно на графике, весной, в период нагревания, температура воды на р. Емца выше по сравнению с онежской водой, что объясняется относительно более быстрой реакцией вод Емцы на изменение синоптических условий. Аналогичная ситуация и в период охлаждения: изменение температуры воды в р. Емца более интенсивно, чем в р. Онега. В результате температура ее вод оказывается ниже, по сравнению с рекой меньшего размера.

Такая закономерность может нарушаться вследствие впадения боковых притоков. Притоки могут формировать местный сток в других природных условиях, что приводит к их отепляющему или охлаждающему воздействию на водную массу основной реки.

На температуру воды в реках в различные фазы водного режима влияет соотношение источников питания рек. Оно влияет на среднюю температуру воды в русловой сети и на температуру воды ее отдельных участков. Разгрузка подземных вод изменяет температуру воды в реке в зависимости от сезона года. Летом подземные воды имеют температуру относительно более низкую, поэтому они оказывают охлаждающее влияние на температуру воды в реках. Зимой обратная ситуация: подземные воды отепляют речную водную массу.

Пример влияния этого фактора на температуру воды в реках дают реки черноморского побережья между гг. Новороссийск и Батуми. Они могут иметь подземное и дождевое питание. В разные сезоны года подземные воды оказывают как отепляющее (зимой), так и охлаждающее воздействие (лето). В летний период температуры воды вследствие теплообмена с атмосферой нагреваются, в зимний период температура воды этих рек, несмотря на теплообмен с атмосферой и благодаря влиянию грунтовых вод, не опускается ниже 40C.

Реки с существенным ледниковым питанием (Бзыбь, Мзымта, Кодори и Риони) наоборот имеют пониженную температуру. Она не превышает 100С в нижнем течении, а в истоке составляет 0,1–0,30С (Соколова, 1951). Таким образом, ледниковые воды всегда оказывают охлаждающее воздействие на основной объем воды в русле реки.

Некоторое влияние на температуру воды на участках рек оказывают местные факторы. Вследствие изменения прозрачности воды, скорости течения, наличия или отсутствия водной растительности, наличия затененности водной поверхности, температура на разных участках рек отличается от фоновых значений. Влияние этих факторов обусловлено их воздействием на теплообмен водной массы и атмосферы. Например, повышенная скорость течения приводит к усилению теплообмена с атмосферой вследствие усиления турбулентного теплообмена. Водная растительность замедляет течение, способствует образованию застойных зон, где вода сильно прогревается. При малой прозрачности воды солнечная радиация поглощается в верхнем слое, толщиной 5–10 см и не проникает глубже, что приводит к увеличению температурных градиентов по глубине реки. Влияние этих факторов на годовой термический режим незначительно. Тем не менее, при изучении формирования теплового режима реки по глубине, ширине и длине, их следует учитывать, так как в этих пространственно-временных масштабах они могут иметь существенное значение.

Температура воды в реках изменяется по их длине. Для многих рек можно выделить участки, по длине которых температура воды повышается, стабильна или уменьшается. Это обусловлено изменениями в сочетании вышеперечисленных факторов, определяющих температуру воды в реках, по длине водотоков. Например, температура воды в направлении от истока к устью в верховьях малых рек в теплый период года закономерно повышается. Это обусловлено постепенным уменьшением доли грунтовых вод в формировании стока. Для горных рек (независимо от преобладающего типа питания) аналогичная закономерность – увеличение температуры с удалением от истока в теплый период года, обусловлена орографическими эффектами изменениями температуры воздуха и воды.

Важным фактором формирования термического режима и состояния водотоков на локальных участках рек является антропогенное влияние (их «тепловое загрязнение»). Под этим термином понимается комплекс направленного изменения теплового стока. Тепловое загрязнение различается по типу и масштабам воздействия на температурный фон в реке. Наиболее ощутимое воздействие на термический режим рек и водотоков оказывают теплоэнергетика, промышленно-коммунальное водоснабжение и регулирование стока воды.

Теплоэнергетика изменяет термический режим рек вследствие сбросами в их русла подогретых вод. При прочих равных условиях влияние теплоэнергетических предприятий на термический режим определяется соотношением бытовых расходов в реке и величиной забираемой воды на охлаждение и разницей температур речной и охлаждающей воды. Относительно холодная вода забирается из водного объекта для охлаждения конденсаторов ГРЭС, АЭС и ТЭС. На реках чаще всего используется прямоточная система водоснабжения, которая подразумевает сброс подогретых вод в те же водные объекты, из которых был произведен водозабор. Температура сбросных вод тепловых электростанций в этом случае превышает естественную на 8–120С, а иногда и более. Зона подогретых вод на крупных ГРЭС прослеживается на площади десятков квадратных километров. Особенно отчетливо влияние сбросных вод ГРЭС на реки проявляется в зимний период – в районе электростанций ледостав не образуется. Например, ниже Яйвинской ГРЭС река не замерзает на протяжении около 40 км (Леонов, 1977).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31

рефераты
Новости