рефераты рефераты
Главная страница > Дипломная работа: Особенности термического режима рек  
Дипломная работа: Особенности термического режима рек
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Особенности термического режима рек

Основные типы эпюр температуры хорошо соответствуют реальному распределению температуры у поверхности и у дна водных потоков. Для р. Невы, например, наименее изменчивой по форме частью эпюры оказалась придонная зона водного потока. Наоборот, температура воды в поверхностном слое отличается максимальной изменчивостью (рис. 4.22). В этом слое наблюдается изменение θ во времени, абсолютной величины градиента температуры по глубине. С началом дневного нагревания водной массы (с 7:00) тип эпюры температур постепенно изменяется с типа 7 на 8.

Температура воды в каждой точке вертикали (в соответствии с формулой (3.17)) изменяется в зависимости от характерных температур , , глубины потока и коэффициента шероховатости русла (), параметра а1. При использовании этой формулы для описания распределения температуры воды на вертикали оказалось, что если считать а1=427, то изменение температуры воды по вертикали равно нулю. Соответствие с фактическими эпюрами достигается при а1=0,06–0,2.

Изменение глубины потока h и шероховатости n относительно слабо влияют на изменение относительного распределения температуры воды. Например, при увеличении глубины потока с 1 м до 10 м (прочие условия равны, θ1=200С, θп=20,30С) изменение температуры на глубине 0,1h составило -0,0005% (уменьшилось на 0,0120С), на глубине 0,2h изменение температуры равно -0,0002% (уменьшилось на 0,0040С). При дальнейшем увеличении относительной глубины различия температуры становятся еще менее заметными.

При расчетах изменения температуры воды по вертикали с использованием формулы (3.17), увеличение коэффициента шероховатости с 0,02 (соответствует ровным незаросшим руслам) до 0,04, что соответствует поймам, поросшим кустарником, ведет к уменьшению градиентов температуры в верхнем слое водной массы на 0,2% и к увеличению температуры в средней и нижних частях эпюры на 0,01–0,020С. При увеличении коэффициента шероховатости до 0,1, что соответствует густо облесенным поймам (Маккавеев, Чалов, 1986) увеличение градиента в верхней части эпюры составляет 0,03%, а в средней части эпюры разница температуры для этих двух случаев составляет 0,01–0,050С. Это относительно большие изменения, так как общий перепад температуры воды на вертикали составляет 0,130С (соответствует максимальному значению Δθэ, по измерениям на р. Ока). Глубина вертикали не имеет большого значения для формирования эпюры температур. Наоборот значение коэффициента шероховатости является значимым фактором в формировании температурной эпюры.

Данные наблюдений свидетельствуют о возможной связи распределения температуры воды по глубине со средней скоростью на вертикали. Для проверки этой гипотезы, заменим в уравнении (3.10) скорость в данной точке, осредненную по времени, на среднюю скорость на вертикали. В этом случае при подстановке в уравнение выражения получим:

                                               (4.1)

С учетом замечаний о знаке «минус» в степени при экспоненте:

                                               (4.2)

Анализ уравнения (4.2) показывает, что если принять распределение скоростей на вертикали по уравнению эллипсоида (Караушев, 1969), то изменение поверхностной скорости потока не влияет на распределение температуры по глубине, поскольку:

.                                               (4.3)

Отношение скоростей не зависит от величины скорости, а является функцией глубины потока и расстояния до дна. Аналогичный по смыслу результат получается при использовании параболического закона распределения местной скорости по глубине:


                                (4.4)

Сравнение результатов, полученных по формулам (3.17) и (4.2) при разных способах аналитического описания скоростной эпюры, коэффициентах шероховатости, величинах =23,260С, =23,390С, характеризует табл. 4.4. Значения ,  соответствуют данным наблюдений на р. Ока в 2007 г. при наибольшей изменчивости температуры на вертикали. Из анализа этой таблицы следует, что различия в значениях температуры воды, рассчитанных по разным формулам (θф2 – θф1 и θф3 - θф1), на всех горизонтах не превышают 0,010С при любых значениях коэффициента шероховатости n. Следовательно, учет отношения скоростей  выражением (4.1) не дает преимуществ по сравнению с расчетным распределением температуры по вертикали формулой (3.17). Кроме того, скорость потока косвенно учитывается при расчете Сш для вычисления параметра М по формуле, предложенной в работе. Увеличение этого параметра приводит, согласно формуле Шези-Маннинга, к уменьшению скорости потока, и выравниванию температуры воды на вертикали.

Для проверки эффективности формулы (3.17) необходимо заранее исключить те из измеренных температурных эпюр, которые не могут соответствовать формуле в силу особенностей ее теоретического обоснования. При выводе формулы считалось, что изменение температуры по ширине потока незначительно по сравнению с изменением по глубине потока. Это условие обеспечило устранение членов уравнения теплопроводности описывающих изменение температуры в поперечном сечении. Например, при проверке эффективности формулы (3.17) нельзя использовать измерения в зоне смешения потока. Как показала практика, критерием отбора вертикалей для этой цели является величина Δθэ < 0,10С.

Попытки сравнивать данные наблюдений и результаты расчета привели к необходимости более точно задавать относительную глубину каждой точки измерений. При расчете коэффициента при втором члене уравнения (3.17) учитывается поверхностная температура воды. Поэтому для более точного расчета поверхностную температуру воды необходимо рассчитывать. Это легко сделать, выразив величину  через формулу (3.17) и считая величину  отрицательной величиной:

                                      (4.5))

Подставляя полученную величину в качестве константы в формулу (3.17), рассчитываем температуры воды на всех интересующих нас вертикалях.

Сравнение данных, полученных при измерениях в узле слияния на Протве и Исьме вне зоны смешения показало, что формула удовлетворительно описывает 82% измеренных точек в пределах точности измерительного прибора 0,010С и при значениях а1=0,08–0,2, коэффициенте шероховатости n=0,02.

Анализ данных измерений на плесе и перекате р. Протва показывает, что для 11 из 18 вертикалей характерно равномерное распределение температуры. Они относятся к эпюрам типа 3. Для 4 вертикалей имеется неоднородность распределения температуры воды в пределах точности прибора (0,010С) и поэтому они также могут быть отнесены к эпюрам типа 3. Остальные вертикали хорошо описываются формулой (3.17). При этом отсутствует влияние поперечной неоднородности температуры воды. Аппроксимация поля точек, характеризующих изменение температуры воды в зависимости от глубины потока оказывается хороша и при величине Δθэ = 0,640С, полученной при измерениях на р. Протва (см. приложение №4). В данном случае наилучшие результаты были получены при а1=0,25 и n=0,02 (рис. 4.24). Однако и при других значениях параметра а1=0,2 координаты сопоставляемых функций отличаются не более чем на 0,010С.

Аналогичный сравнительный анализ 38 вертикалей, полученных при измерениях на р. Ока показал, что совпадение расчетных и натурных температурных эпюр с точностью 0,010С характерно для 85% вертикалей (при а1=0,08 – 0,2 и n=0,02).


5. Закономерности изменения температуры воды по ширине водных потоков

Влияние теплоэнергетики, промышленного и коммунального водоснабжения на термический режим рек широко известно и проблемам, с этим связанным, уделяется большое внимание в научной литературе (Леонов, 1977). Часто рассматривается комплексное воздействие сброса подогретых вод в водотоки на их термический, ледовый, гидрохимический, гидравлический режим и процессы самоочищения. Одной из частных задач, для которых тепловые нагрузки такого характера имеют значение, является изучение распределения температуры воды в поперечном сечении потока. Для рассмотрения данного вопроса поступление подогретых вод можно рассматривать как появление в воде консервативной примеси.

5.1 Состояние проблемы

Выравнивание концентрации консервативной примеси по ширине реки – хорошо изученный процесс. Основным механизмом смешения по ширине потока является дисперсия. Как уже было упомянуто в главе 4, после поступления в водоток примеси быстрее прочих устраняются вертикальные градиенты концентрации примеси. После этого доминирует процесс устранения градиентов примеси по ширине потока. В период , где  – момент завершения процесса перемешивания по ширине потока, характерна максимальная интенсивность изменения концентрации примеси для поперечного (по отношению к оси потока) направления (Алексеевский, 2006). Этот период называют периодом Тейлора. Удаление створа полного перемешивания по ширине реки от источника поступления примеси зависит от типа поступления примеси в поток (береговой, русловой). Для берегового типа поступления сточных вод (Кондюрина, 2000).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31

рефераты
Новости