рефераты рефераты
Главная страница > Курсовая работа: Разработка системы электроснабжения механического цеха  
Курсовая работа: Разработка системы электроснабжения механического цеха
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Разработка системы электроснабжения механического цеха

4)  Газовая защита – от повреждений внутри кожуха, сопровождающихся выделением газа и от понижения уровня масла, выполняется с использованием реле давления и мембраны в крышке бака трансформатора.

5)  Токовая защита от перегрузки – предназначена для защиты от токов, обусловленных перегрузкой трансформаторов, действует на сигнал.

Расчет параметров срабатывания максимальной токовой отсечки:

Ток срабатывания мгновенной токовой отсечки (МТО), А,

,    

где кот – коэффициент отстройки, принимается равным 1,2, о.е;

– максимальное значение периодической составляющей тока короткого замыкания в начальный момент времени, на стороне низкого напряжения трансформатора, А;

кТ – коэффициент трансформации защищаемого трансформатора, о.е;

.

Ток срабатывания реле МТО, А,

,      

где ксх – коэффициент схемы, равный 1, о.е;

кТТ – коэффициент трансформации трансформатора тока, о.е;

Трансформатор тока выбирается по номинальному току трансформатора на стороне высокого напряжения IВН.ном, А,

,

.

Принимается трансформатор тока с номинальным первичным током 75А, имеющий ктт=15.

.

Коэффициент чувствительности защиты, о.е,

,     

где – ток двухфазного короткого замыкания на стороне высокого напряжения трансформатора, А;

,     

где – ток трёхфазного короткого замыкания на стороне высокого напряжения трансформатора, принимается, в связи малой протяжённостью высоковольтной КЛ, равным току трёхфазного КЗ на шинах РУ 6 кВ, А;

;

,

т.е. требуемая чувствительность обеспечивается.

Расчет параметров срабатывания максимальной токовой отсечки МТО:

,    

где кот = 1,2;

кВ – коэффициент возврата реле, принимается равным 0,85, о.е;

Iраб.max – наибольшее значение рабочего тока трансформатора, принимается равным 1,3∙IВН.ном с учетом допустимой перегрузки трансформатора в послеаварийном режиме, А;

.

Ток срабатывания реле МТО, А,

,    

.

Коэффициент чувствительности защиты, о.е,

,     

где – ток двухфазного короткого замыкания в минимальном режиме на стороне высокого напряжения трансформатора при коротком замыкании на стороне 0,4 кВ, А;

,     

;

,

т.е. требуемая чувствительность обеспечивается.

Время срабатывания защиты, с,

tсз = tсз.пр + Dt , 

где tсз.пр – время срабатывания защит отходящих присоединений, принимается равным 0,5,с;

Dt – ступень селективности, равная 0,5, с;

tсз = 0,5 + 0,5 =1.

Расчёты параметров срабатывания токовой защиты от перегрузки с действием на сигнал.

Ток срабатывания токовой защиты с действием на сигнал, А,

Iсз= кн∙1,3∙IВН.ном,

где кн = 1,05;

Iсз=1,05∙1,3∙60,622=82,749.

Ток срабатывания реле, А,

,     

.

Время срабатывания защиты, с;

tсз=,

tсз=1+0,5=1,5.

 

2.11 Защитное заземление

Защитным заземлением называется преднамеренное электрическое соединение с землёй или её эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус или по другим причинам. Схема защитного заземления представлена на рисунке.

Защитное заземление предназначено для устранения опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки, оказавшимся под напряжением. Защитное заземление следует отличать от рабочего заземления. Рабочее заземление предназначено для обеспечения надлежащей работы электроустановки в нормальных и аварийных условиях.

Корпусы электрических машин, трансформаторов, светильников, аппаратов и другие металлические нетоковедущие части могут оказаться под напряжением при повреждении изоляции и контакте их с токоведущими частями. Если корпус при этом не имеет контакта с землёй, то прикосновение к нему также опасно, как и прикосновение к фазе.

Принцип действия защитного заземления основан на снижении до безопасных значений напряжения прикосновения и напряжения шага. Это достигается путём уменьшения потенциала заземлённого оборудования (за счёт уменьшения сопротивления заземления), а также путём выравнивания потенциалов основания, на котором стоит человек, и заземлённого оборудования.

Рисунок 2.7 – Принципиальная схема заземления в сетях трехфазного тока

1 – заземлённое оборудование; 2 – заземлитель рабочего заземления; 3 – заземлитель защитного заземления.


Область применения защитного заземления:

-  сети до 1000 В переменного тока – трехфазные трехпроводные с изолированной нейтралью, однофазные двухпроводные, изолированные от земли, а также постоянного тока двухпроводные с изолированной средней точкой обмоток источника тока;

-  сети выше 1000 В переменного и постоянного тока с любым режимом работы нейтрали.

В сети с глухозаземлённой нейтралью напряжением до 1000 В заземление неэффективно, так как даже при глухом замыкании на землю ток зависит от сопротивления заземления и при его уменьшении ток возрастает.

Расчёт заземлителя подстанции 6/0,4 кВ:

Расчёт производится для понизительной подстанции, на которой установлены два трансформатора ТМЗ-630/6 с заземленными нейтралями на стороне 0,4 кВ. Заземлитель выбирается выносного типа, расположенный по контуру у наружной стены подстанции. Естественных заземлителей нет. Ток замыкания на землю неизвестен, однако известна общая протяженность кабельных линий 6 кВ lКЛ=1 км. Заземлитель предполагается выполнить из вертикальных стержневых электродов длиной lВ=3 м, диаметром d=25 мм. Верхние концы, которых соединяются между собой с помощью горизонтального электрода выполненного из той же стали, уложенной на глубине H0=0,7 м. Предварительная схема заземлителя и размеры представлены на рисунке . По предварительной схеме принимаем количество вертикальных электродов n=15 шт. Удельное сопротивление земли ρизм=100 Ом∙м.

Расчётный ток замыкания на землю, А,

где Uлин – линейное напряжение, кВ;

Требуемая норма сопротивления заземляющего устройства определяется из двух условий:

 Ом для U до 1000 В;

 Ом для U>1000 В при условии, что заземлитель используется одновременно и для установок U до 1000 В.

Рисунок 2.8 – Предварительная схема заземлителя

По первому условию:

.

Принимается норма сопротивления заземляющего устройства rн=4 Ом.

Удельное сопротивление земли для горизонтального и вертикального электродов, Ом×м:

,

,

где ксг, ксв – повышающие коэффициенты для вертикальных и горизонтальных электродов, о.е;

ксг=3,5; ксв=1,5.

Расположение вертикальных электродов относительно поверхности земли представлено на рисунке 2.9.

Рисунок 2.9 – Расположение вертикального заземлителя

Расчётное сопротивление растеканию вертикальных электродов, Ом,

.

Примерное число вертикальных электродов при предварительно принятом коэффициенте использования ηв=0,56,

N=RВ/( ηвrн),

N=46,4/(0,56∙4)=20,7.

Принимается N=20, расстояние между вертикальными электродами a=3 м.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25

рефераты
Новости