рефераты рефераты
Главная страница > Курсовая работа: Нейтринные осцилляции  
Курсовая работа: Нейтринные осцилляции
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Нейтринные осцилляции

          Массивные нейтрино нужны астрофизикам по двум причинам. Во-первых, для объяснения природы невидимых корон галактик. Во-вторых, с помощью тех же нейтринных облаков можно решить некоторые трудности в образовании галактик.

          Если нейтрино безмассово, то реликтовое нейтрино всех сортов (а их общее количество по оценкам составляет около 500 штук в см3) не внесут сколько-нибудь заметного вклада в общую плотность вещества. Совсем другая ситуация возникает если нейтрино имеет массу. В этом случае более 95% массы (энергии) приходится на долю нейтринного излучения. И это кардинально меняет наши представления о структуре и будущем Вселенной, поскольку эволюция Вселенной существенно зависит от плотности вещества в ней.

          Если считать, что масса нейтрино равна нулю, то согласно современным представлениям Вселенная будет бесконечно расширяться. Однако если нейтрино имеет массу, то расширение через некоторое время сменится сжатием. “Хотя это случится не скоро (расширение в ближайшие 20 миллиардов лет нам гарантированно), вопрос о далёком будущем, конечно же, является принципиально важным и волнующем” (Я.Б.Зельдович).

2.5. Двойной β-распад.

          Существование двойного β-распада было предсказано чуть позже (1935 г.), чем существование нейтрино. При обычном β-распаде в ядре А(Z,N) один нейтрон превращается в протон, ядро переходит в A(Z+1,N – 1), испуская электрон и антинейтрино. В достаточно редких случаях оказывается энергетически выгодным двойной β-распад. При нём переход выглядит следующим образом: A(Z,N) A(Z+2,N – 2). Он происходит непосредственно между этими ядрами, если энергия промежуточного ядра A(Z+1,N – 1) выше, чем у A(Z,N) (рис. 4).

                    Рисунок.4.   Энергетические уровни трёх ядер. Ядро Z,N способно испытывать двойной β-распад.

Превращение двух нейтронов в два протона может происходить независимо:

                                                                                    ( 2.7)

                                                                                    ( 2.8)

                                                                              ( 2.9)

                                                      ( 2.10)

При этом происходит одновременно слабый переход двух d-кварков в два u-кварка и испускается два нейтрино (рис. 5.). В этом случае распад называется двух нейтринным.

          Этот же процесс может происходить и не независимо:

                                                                                    ( 2.11)


                                                                                     ( 2.12)

                                                                                      ( 2.13)

                                                               ( 2.14)

При этом виртуальное нейтрино, испущенное одним кварком, поглощается другим кварком (рис. 6). В этом случае распад называется без нейтринным. Этот процесс возможен только если нейтрино майораново, так как лептонный заряд в этом процессе не сохраняется. В стандартной теории слабого взаимодействия лептонное число сохраняется. Если, однако, нейтрино обладают майорановыми массами, то лептонное число не сохраняется. При этом вместо трёх нейтрино и трёх антинейтрино, мы ммеем дело с шестью истинно нейтральными, так называемыми майорановыми нейтрино.

                         Рисунок 5.                            Рисунок 6.

Поиски двойного без нейтринного двойного β-распада накладывают строгие ограничения на нейтринные массы. Эксперимент Heidelberg – Moscow  [15] обеспечил самый строгий верхний предел на эффективную майорановскую массу нейтрино: .


3. Некоторые эксперименты по регистрации нейтрино.

3.1. Детекторы солнечных нейтрино.  

          Все способы  регистрации  солнечных  нейтрино делятся на три категории: 1) радиохимический 2) геохимический 3) рассеяние электронов.

          1)Радиохимические детекторы. В этом методе  из Солнца попадают в детектор, содержащий некоторое число ядер Х, которые претерпевают обратный бета распад:

                                                                                   ( 3.1)

Детекторы некоторое время облучают  и потом наблюдают ядра Y. Ядра Y выделяют химическим способом, и их число даёт скорость захвата нейтрино. В качестве материала мишени можно использовать ядра указанные в таблице 4.

Начальные ядра       Х

Конечные ядра  

         Y

Порог реакции

      (МэВ)

Период полураспада для Y Скорость захвата в SNU

       37Cl

       37Ar

      0.814       35 дней

    

       71Ga

      71Ge

      0.233       11.4 дня

    

         7Li 

           7Be

      0.862       53.4 дня

    

       127I

     127Xe

      0.789       36 дней

     

        81Br

      81Kr

      0.470

       лет

    

        98Mo

      98Tc

      1.680

       лет

    

       205Tl

     205Pb

      0.062

       лет

      

Страницы: 1, 2, 3, 4, 5, 6, 7, 8

рефераты
Новости