рефераты рефераты
Главная страница > Дипломная работа: Расчет электроснабжения станкостроительного завода  
Дипломная работа: Расчет электроснабжения станкостроительного завода
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Расчет электроснабжения станкостроительного завода

На подстанциях с высшим напряжением 35 - 750 кВ рекомендуется устанавливать два трансформатора (автотрансформатора). При соответствующем технико-экономическом обосновании или при наличии двух средних напряжений допускается установка более двух трансформаторов (автотрансформаторов).

Мощность трансформаторов выбирается так, чтобы при отключении наиболее мощного из них на время ремонта или замены, оставшиеся в работе, с учетом их допустимой перегрузки и резерва по сетям среднего и низшего напряжений, обеспечивали питание нагрузки. Согласно ГОСТ в аварийном режиме допускается работа трансформатора с перегрузом на 40% не более 5 суток, и временем перегрузки не более 6 часов в сутки.

Расчетная мощность трансформатора (автотрансформатора) определяется на основании построенных суточных графиков нагрузок, по которым находят максимальную нагрузку подстанции. Обычно мощность каждого трансформатора (автотрансформатора) двухтрансформаторной подстанции выбирают равной (0,65-0,7) суммарной максимальной нагрузки подстанции.

Суммарная максимальная нагрузка подстанции согласно рисунку 12.5:

Smax = 72,1 МВА

Мощность одного трансформтора:

SНТ = 0,7×Smax = 0,7×72,1 = 50,47 МВА

По стандартной шкале номинальных мощностей трансформаторов выбираем трансформатор:

2хТРДЦН – 63000/110

SНОМ = 63 МВА, UВН = 115 кВ, UСН = 36,5 кВ, UНН = 10,5 кВ,

uкВ-С = 16,2%, uкВ-Н = 28,8%, uкС-Н = 12,6%, Рк ВН-СН = 220 кВт,

Рх = 74 кВт, Iх% = 0,5, С=150 тыс.р.

После выбора номинальной мощности трансформатора производится проверка на допустимость систематических перегрузок.

Допускаемые систематические перегрузки трансформатора в основном зависят от конфигурации графика нагрузок, системы охлаждения трансформатора, постоянной времени трансформатора t и температуры окружающего воздуха и определяются по двухступенчатому суточному графику нагрузок.

Если исходный суточный график нагрузок многоступенчатый, то его необходимо преобразовать в эквивалентный (в тепловом отношении) двухступенчатый. Для этого из графика выделяют первую и вторую ступени. Переменную нагрузку в пределах каждой ступени заменяют неизменной нагрузкой, создающей потери такой же величины, как и переменная нагрузка. Величина этой эквивалентной нагрузки может быть определена по выражению, кВ*А:

 , (12.4)

где n - число ступеней многоступенчатого графика; ti - длительность i-й ступени графика, ч; Si - нагрузка i-й ступени графика, кВ×А.

Преобразование заданного графика нагрузок в эквивалентный двухступенчатый:

- проводим на заданном графике горизонтальную линию с ординатой, равной номинальной мощности трансформатора, предполагаемого к установке;

- пересечением этой линии с исходным графиком выделяем участок наибольшей перегрузки продолжительностью h'=4ч;

Рисунок 12.9 Построение двухступенчатого графика по суточному графику нагрузок трансформатора

 - оставшуюся часть исходного графика разбиваем на m интервалов Dti с нагрузкой в каждом интервале Si;

 - определяем начальную нагрузку SЭ1 эквивалентного графика (мощность первой ступени) из выражения, кВ×А:

Коэффициент начальной нагрузки

Предварительный коэффициент максимальной нагрузки

Коэффициент максимальной нагрузки

Т.к. К’2 >0.9×КMAX, 1.14>1,026, принимаем К2 = К’2 = 1,14.

Определяем продолжительность перегрузки:

Используя [2] по средней эквивалентной температуре окружающей среды t°= -10° и продолжительности перегрузки, определяем допустимость относительной нагрузки:

К2ДОП = 1,35

К2ДОП ³ К2, 1,35 > 1,14.

Систематические перегрузки являются допустимыми.

12.3 Расчет токов короткого замыкания

Согласно [3] проверка правильности выбора аппаратов и проводников напряжением 6 - 35 кВ производится по току трехфазного к.з., а напряжением 110 кВ и выше - по току трехфазного или однофазного к.з. Расчет токов к.з. производят в основных коммутационных узлах подстанции. Для определения наибольшего возможного тока к.з. в каждом узле следует считать включенными все генераторы в системе, все трансформаторы и линии электропередачи (ЛЭП) подстанции.

Расчет сопротивлений элементов схемы замещения подстанции в относительных единицах:

сопротивление системы

Х*с = Хс×(Sб/Sс) = 1,1×(3000/3000) = 1,1,

где Хс - заданное эквивалентное сопротивление системы, отнесенное к мощности системы Sc; Sб- принятое значение базисной мощности, МВ×А;

Sб = Sс = 3000 МВ×А.

сопротивление воздушной линии

Х*Л = Х0×l×(Sб/U2) = 0.4×75×(3000/1102) = 7,43,

где Х0 - сопротивление 1км линии, Ом/км;

1 - длина линии, км;

U - напряжение ступени, где находится воздушная линия, кВ.

сопротивления трехобмоточного трансформатора

Х*В = 0,005×(uкВН-СН+ uк ВН-НН -uк СН-НН )×(Sб/SНТ);

 Х*С = 0,005×(uк ВН-СН + uк СН-НН -uк ВН-НН)×(Sб/SНТ); (12.5)

Х*Н = 0,005×(uк ВН-НН +uк СН-НН - uк ВН-СН)×(Sб/SНТ),

где uкВН-СН,, uк ВН-НН ,-uк СН-НН - соответственно напряжения к.з, между обмотками высшего и среднего, высшего и низшего, среднего и низшего напряжений для выбранного трансформатора, %;

 Х*В = 0,005×(16,2+ 28,8 - 12,6)×(3000/63) = 7,71;

 Х*С = 0,005×(16,2 + 12,6 - 28,8)×(3000/63) = 0;

 Х*Н = 0,005×(28,8 + 12,6 - 16,2)×(3000/63) = 6.

На схеме замещения все сопротивления обозначены порядковыми номерами, под чертой указана величина сопротивления.

Определение периодической составляющей тока к.з.

В общем случае значение периодической составляющей равно, кА:

 IП = , (12.6)

      где Е*э - эквивалентная ЭДС источников питания, о.е.; Х*э - эквивалентное сопротивление схемы до точки к.з., о.е.;

      базисное значение тока, кА

  (12.7)

Рисунок 12.10 Схема замещения для расчета токов к.з.

      В дипломном проекте можно принять Е*э = 1, тогда

 IП =  (12.8)

1)  для точки К-1

 

Х*Э1 = Х*с + Х*Л /2 = 1,1+7,43/2 = 4,82

По формуле (12.8) определим ток к.з.

IП1 = .

2)  для точки К-2

 

Х*Э2 = Х*Э1 + Х*В/2 = 4,82+7,71/2 = 8,68

По формуле (3.4) определим ток к.з.

IП2 = .

3)  для точки К-3

4) 

 

а) выключатель разомкнут

Х*Э3 = Х*Э2 + Х*Н = 8,68+6 = 14,68

I’П3 = .

б) выключатель замкнут

Х*Э3 = Х*Э2 + Х*Н /2 = 8,68+6/2 = 11,68

I’’П3 = .

      Для дальнейшего расчета будем использовать I’П3 = 11,24 кА.

12.4 Выбор кабельных линий к РП

Сечение кабелей должно удовлетворять следующим требованиям: экономичность, стойкость к нагреву в форсировочном режиме, термической стойкости при к.з.

Сечение кабелей рассчитывается по экономической плотности тока. Для кабелей с алюминиевыми жилами при Тmax= 4554,22 час jэк=1,4 А/мм2.

 , (12.9)

где Iр.м. – ток расчетный максимальный, А

  (12.10)

где n – число кабелей, проложенных в земле,

  (12.11)

При проверке кабелей на длительно допустимый ток учитывают число рядом проложенных в земле кабелей

Iр.ф.£ I’дл.доп

I’дл.доп = КN*Iдл.доп,

          где КN – поправочный коэффициент на число работающих кабелей.

При проверке на термическую стойкость необходимо, чтобы выполнялось условие:

  (12.12)

С=92; tф = tРЗ + tПО + Та = 0,8+0,12+0,05=0,97 с

Например, для первого РП: n = 6

  

 

 

Выбираем стандартное сечение 3-х жильного кабеля с алюминиевыми жилами.

qст = 185 мм2

 

Для этого сечения длительно допустимый ток

Iдл.доп. = 340 А

Iр.ф = Iр.м. ·2 = 71,28×2 = 142,56 А

КN = 0,75 142,56 £ 255.

 

Выбранное сечение кабеля удовлетворяет условиям проверки на нагрев.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38

рефераты
Новости