рефераты рефераты
Главная страница > Дипломная работа: Проектирование систем электроснабжения промышленных предприятий на основании технико-экономических расчетов  
Дипломная работа: Проектирование систем электроснабжения промышленных предприятий на основании технико-экономических расчетов
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Проектирование систем электроснабжения промышленных предприятий на основании технико-экономических расчетов

З = З0 + З1 · Q + З2 · Q²                                                                (14.5)

где З – приведенные затраты, руб.;

Q – генерируемая реактивная мощность, МВар;

З0 – постоянная составляющая затрат, не зависящая от генерируемой мощности;

З1 – удельные затраты на 1 МВар генерируемой мощности, руб./МВар;

З2 – удельные затраты на 1 МВар² генерируемой мощности, руб./МВар².

Для определения оптимальной реактивной мощности сравниваются затраты на выработку реактивной мощности синхронными источниками с затратами на выдачу той же мощности конденсаторами:

Q1 = (З1к – З1сд)/2З2сд                                                                 (14.6)

На промышленных предприятиях основные потребители реактивной мощности присоединятся к сетям до 1000 В. Источниками реактивной мощности здесь являются БК, а недостающая часть перекрывается перетоком из сети высшего напряжения – с шин напряжением 6…10 кВ от СД, БК, генераторов местной электростанции или из сети электросистемы.

Задача оптимизации реактивной мощности сводится к определению таких значений реактивной мощности каждого источника, при которых суммарные затраты достигают минимума при соблюдении баланса реактивной мощности.

Если по заданию энергоснабжающей организации из системы можно получить Qз, то должно быть скомпенсировано Qк = 1.15 (Qв – Qэ) синхронными двигателями и конденсаторами. Коэффициент 1,15 учитывает необходимый 15%-ный резерв реактивной мощности на предприятии, для чего требуется увеличить мощность конденсаторов Qк.

Размещение компенсирующих устройств

Рациональное размещение компенсирующих устройств зависит от многих факторов, в частности от соотношения мощностей синхронных и асинхронных двигателей, установленных в сетях высшего и низшего напряжения.

Дополнительным источником реактивной мощности в распределительных сетях служат БК, место которых определяется в результате приведенных расчетов, так как БК можно устанавливать в сетях напряжением 6…10 кВ или 0,4 кВ. при этом следует учитывать, что разукрупнение мощности БК приводит к увеличению удельных затрат на аппаратуру, измерительные приборы, конструкции и пр. поэтому не рекомендуется применение БК на напряжение 6…10 кВ единичной мощностью менее 400 кВар, если присоединение выполняется через общий выключатель с силовым трансформатором или другим приемником электроэнергии, то единичная мощность БК снижается до 100 кВар.

В связи с внедрением в промышленности СД средней мощности 500…1600 кВт вопрос о размещении дополнительных компенсирующих устройств приобретает важное значение и усложняется.

Максимальная реактивная мощность, которую может генерировать СД

                                                               (14.7)

где  – коэффициент дополнительной перегрузки.

Приняв cos φ = 0,9; = 0,92; = 1,2, получим

                                                                            (14.8)

При наличии СД в узле нагрузки они должны быть оптимально использованы для повышения коэффициента мощности узла сосредоточенной нагрузки напряжением 6…10 кВ, расположенной вблизи установки СД.

Использовать всю реактивную мощность СД для повышения cos φ в цехах предприятия нецелесообразно, так как переток ее по ЛЭП напряжением 6…10 кВ вызывает дополнительную нагрузку на них и может привести к завышению мощности трансформатора, т.е. экономически он не всегда оправдан. Поэтому компенсация реактивной мощности потребителей проводится с широким применением установок БК.

В отдельных случаях необходимо проверять экономичность установки БК сопоставлением приведенных затрат на установку БК и на потери в СД на генерацию реактивной мощности. Необходимость в установке БК обычно возникает, если реактивная мощность СД недостаточна для компенсации.

14.4 Регулирование работы компенсирующих устройств

При минимальной нагрузке потребителями мощность конденсаторной батареи должна быть уменьшена, так как поступление избыточной емкостной нагрузки в сеть вызывает повышение напряжения и увеличивает потери электроэнергии. Для более экономичной работы компенсирующих устройств применяют автоматическое регулирование мощности конденсаторных батарей и других видов КУ.

Регулирование может осуществляться в зависимости от силы тока нагрузки, времени суток, коэффициента мощности и напряжения. Наибольшее применение получило регулирование по напряжению, применяемое в тех случаях, когда кроме повышения коэффициента мощности требуется поддержать напряжение потребителей на уровне номинального.

Рассмотрим схему автоматического ступенчатого регулирования мощности конденсаторной установки по уровню напряжения в сети (рисунок 14.3). Схему можно использовать в конденсаторных установках напряжением свыше 1000 В, но преимущественно – в сетях напряжениям до 1000 В. В последнем случае реле напряжения подключают непосредственно к сети. При понижении напряжения срабатывает реле напряжения 1Н и, замкнув свой контакт в цепи реле времени 1В, с выдержкой времени включает конденсаторную установку. При повышении напряжения срабатывает реле 2Н и реле 2В отключает установку от сети. Для более точной настройки схемы в цепи реле 1Н и 2Н включены добавочные сопротивления ДС для отстройки от кратковременных колебаний напряжения выдержки времени реле принимаются равными 2 – 3 мин.

Для ручного управления установкой ключ управления переводится в положение Р. Подача напряжения на соленоид включения СВ привода выключателя осуществляется кнопкой включения КВ, отключение выключателя – кнопкой КО в цепи соленоида отключения СО. Отключение защитой осуществляет промежуточное реле П, которое срабатывает при кратковременном замыкании контакта З реле защиты. Замкнув контакты в цепи своей обмотки и в цепи СО, реле П самоудерживается, обеспечивая надежное отключение выключателя, и предотвращает включение на короткое замыкание, разомкнув контакт П в цепи СВ. Схема возвращается в исходное положение после срабатывания релейной защиты нажатием кнопки КОЗ, в результате чего реле П теряет питание.

Многоступенчатое автоматическое регулирование комплектными конденсаторными установками серии УК – 0,38 мощностью 220 до 540 кВар и серии УК-6 (10) мощностью от 660 до 1800 кВар обеспечивается устройствами типа АРКОН.

Установка компенсации реактивной мощности типа КРМ – 0,4.

В состав установки входят: контроллер для автоматического регулирования cos φ, сигнализации при неисправностях и недопустимых отклонениях параметров электросети, контроля уровня высших гармоник тока и напряжения в сети и наработки на отказ; конденсаторы, имеющие блок разрядных резисторов могущие самовосстанавливаться после пробоя в диэлектрике; контактор, предохранитель, трансформатор тока и амперметр.

Uном = 400 В; Uраб.макс. = 450 В; Qном =35–600 квар; минимальная ступень регулирования равна 2,5 квар; количество ступеней регулирования мощности 4–12; Габариты 2015х750х590 мм.

15. Технико-экономический расчет

В данном разделе произведем расчет стоимости годовой полезной электроэнергии, годовые потери в электрических сетях, капитальные затраты по кабельным линиям, составим калькуляцию статей и составим таблицу с технико-экономическими показателями.

До накопления необходимых статистических данных по аварийности электрооборудования и сетей предприятий промышленности и практического освоения количественной (стоимостной) оценки надежности электроснабжения следует стремиться к тому, чтобы экономически сравниваемые варианты обладали одинаковой степенью надежности. Во многих случаях этого не удается достичь полностью. Поэтому помимо экономического сравнения рассматриваемых вариантов необходимо проводить тщательный качественный анализ надежности и других технических показателей каждого из сравниваемых вариантов на основе опыта проектирования и эксплуатации.

1. Определяем суммарный максимум нагрузки потребителей:

 (15.1)

 МВт, данные берем по таблице 4.1 «Сводной ведомости нагрузок».

Годовой полезный отпуск электроэнергии:

 (15.2)

где Тмакс – продолжительность максимальной нагрузки, т.е. число часов в год, за которое питаемый по данной линии потребитель, работая с максимальной нагрузкой, получил бы столько же электроэнергии, как и при работе в течение года по действительному графику.

 МВт·ч

Потери мощности в электрической сети:

– в трансформаторе


ΔРтр = S² / U²ном · r т                                                                    (15.3)

r т = ΔРкз · U²ном / S²ном (15.4)

где ΔРкз – потери мощности трансформатора при коротком замыкании, данные берем по [11.348], ΔРкз = 245 кВт;

r т – активное сопротивление трансформатора, Ом;

ΔРтр – потери мощности в трансформаторе, МВт.

r т = 0,245 · 110² / 63² = 0,746 Ом

ΔРтр = 21,12² / 110² · 0,74 = 0,027 МВт

– в линии:

ΔРкл = S² / U² · r0                                                                  (15.5)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

рефераты
Новости