рефераты рефераты
Главная страница > Дипломная работа: Проектирование систем электроснабжения промышленных предприятий на основании технико-экономических расчетов  
Дипломная работа: Проектирование систем электроснабжения промышленных предприятий на основании технико-экономических расчетов
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Проектирование систем электроснабжения промышленных предприятий на основании технико-экономических расчетов

kи, г = 0,28 (при числе уголков порядка 60 и d / l = 2)

Сопротивление полосы находим по формуле:

                                                             (12.7)


Расстояние между вертикальными электродами d = 4 м. Предлагаемое количество электродов 60, тогда периметр: l = 60 · 4 = 240 м

 Ом

ж) Уточненное сопротивление вертикальных электродов:

                                                                               (12.8)

 Ом

з) Уточненное число вертикальных электродов определяем при коэффициенте использования kив = 0,58, по        [15.91]

при n = Rовэ /kиву · Rвэ = 50,5/ 0,58 · 1,61 = 54

Принимаем 54 уголка

и) Проверяем термическую стойкость полосы 40 х 4 мм²

                                                                              (12.9)

где  – расчетный ток короткого замыкания через проводник, А;

 – приведенное время прохождения тока короткого замыкания на землю, с; Ст – постоянная равная для 74 [6.237].

 = 4,48 кА (из расчета тока КЗ)

 = 1,25 сек., следовательно

 мм²

Таким образом, полоса 40 х 4 мм² условию термической стойкости удовлетворяет.


13. Расчет молниезащиты

Молниезащита – комплекс защитных устройств и мероприятий, предназначенных для обеспечения безопасности людей, предохранения зданий, сооружения, оборудования и материалов от возможных взрывов, загораний и разрушений, возникающих при разрядах молнии.

Насосная установка относится по устройству молниезащиты к III категории и защищается от прямых ударов молнии и заноса высоких потенциалов через наземные металлические коммуникации.

В электрических установках защита от прямых ударов на подстанциях осуществляется вертикальными стержневыми молниеотводами, а защита линий – горизонтальными молниеотводами. Вертикальный стержневой молниеотвод представляет собой высокий столб с проложенным вдоль него стальным проводом, соединенным с заземлителем. Горизонтальный молниеотвод представляет собой провод, расположенный над фазными проводами линии на тех же опорах. Чем выше над защищаемым объектом расположен молниеотвод, тем больше его защитная зона, в которой молниеотвод как бы перехватывает молнию и отводит ее в землю.

Для защиты здания от вторичных воздействий молнии предусматриваются следующие мероприятия: металлические корпуса всего оборудования и аппаратов присоединяются к заземляющему устройству электроустановок, протяженные трубопроводы, выполненные из металла, в местах их взаимного сближения на расстоянии менее 10 см через 30 м соединяются металлическими перемычками.

1. По формулам [15.98] для одиночного стержневого молниеотвода определяются параметры молниезащиты (м/з). Высота зоны защиты над землей h = 50 м, а высота вершины конуса стержневого молниеотвода h0

h0 = 0.85· h м                                                                                 (13.1)


h0 = 0.85 · 50 =42.5 м

hхвысота защищаемого сооружения, равна 20 м;

hм – высота стержневого молниеприемника, м;

hа – активная высота молниеотвода, м.

Радиус зоны защиты на уровне земли r0 и радиус защиты на высоте защищаемого сооружения rх находим по формулам [15.100]:

 (13.2)

 м

rх =                                                     (13.3)

rх = (1,1–0,0002·50) ·(50–1,2 ·20) = 26 м

hм = h - h00                                                                                                                                               (13.4)

hм = 50 – 42,5 = 7,5 м

hа = hhх                                                                                                (13.5)

hа = 50 – 20 = 30 м

α = arctg r0 /h0                                                                                (13.6)

где α – угол защиты (между вертикалью и образующей), град.

α = arctg 50/42,5 = 49,6º

2. Определяются габаритные размеры защищаемого объекта в зоне молниезащиты.

φ = arcsin B/ 2· rх                                                                            (13.7)


cos φ = cos 35.2º = 0.8

А = 2 · rх ·cos φ = 2 · 26 · 0.8 = 41.6 м ≈ 42

А х В х Н = 42 х 30 х 20 м

3. Определяется возможная поражаемость защищаемого объекта в зонах при отсутствии молниезащиты:

N = [(B + 6hх) (A + 6hх) – 7.7 h²х] · n ·               (13.8)

где n           – среднегодовое число ударов молнии в 1 км² земной поверхности в месте нахождения здания или сооружения (т.е. удельная плотность ударов молнии в землю), 1/(км²·год), определяется по [15.99].

N = [(30+6·20) (42+6·20) – 7,720²] · 6 · = 12,3 ·поражений

Основной мерой защиты от возникновения искр при разряде статического электричества служит заземление резервуаров, трубопроводов, сливоналивных устройств. Кроме того, запрещается сливать жидкость свободно падающей струей и применять ременные передачи в пожароопасных помещениях.

14. Компенсация реактивной мощности

Все процессы в электрических системах можно охарактеризовать тремя параметрами: напряжением U, силой тока I и мощностью P. Но для удобства расчетов и учета применяются и другие параметры, в том числе реактивная мощность Q. Существует несколько определений реактивной мощности. Например, в курсе ТОЭ сказано, что реактивная мощность, потребляемая индуктивностью и емкостью, идет на создание магнитного и электрического полей. Индуктивность рассматривается как потребитель реактивной мощности, а емкость – как ее генератор.

Мощность в цепи постоянного тока равна произведению силы тока I и напряжению U:

Р = I · U

Для характеристики мощности цепи переменного тока требуется дополнительный показатель, отражающей разность фаз тока и напряжения – угол φ. Произведение показаний вольтметра и амперметра в в цепи переменного тока называется полной мощностью S, для трехфазной цепи . Средняя за период переменного тока мощность называется активной мощностью: . На основании этих выражений полная мощность S представляется гипотенузой прямоугольного треугольника (рисунок 14.1), один катет которого представляет собой активную мощность Р = S · cosφ, а другой катет – реактивную мощность Q = S·sinφ, Q названа мощностью по аналогии с активной мощностью Р. Из треугольника мощности получают следующие зависимости:

                                                                                     (14.1)

;                                                                       (14.2)

где cos φ – коэффициент мощности;

tg φ – коэффициент реактивной мощности.

Итак, для характеристики мощности в цепи переменного тока введены понятия полной S, активной Р и реактивной Q мощностей и cos φ. Для расчета реактивной мощности удобней пользоваться не cos φ, а tg φ, так как расчетное значение реактивной мощности легко найти из выражения:

Qр = Рр · tg φ                                                                                  (14.3)

Величина tg φ с приближением угла φ к нулю позволяет найти значение Qр с меньшей погрешностью, чем величина cos φ, так как в зоне малых углов φ, где cos φ = 0,95, изменение коэффициента мощности на 1% приводит к изменению коэффициенту реактивной мощности на 10%. Поэтому в настоящее время tg φ в основном и используют для характеристики Q. Следует помнить об условии толковании Q как мощности.

Работа машин и аппаратов переменного тока, основанная на принципе электромагнитной индукции, сопровождается процессом непрерывного изменения магнитного потока в их магнитопроводах и полях рассеяния. Поэтому подводимый к ним поток мощности должен содержать не только активную составляющую Р, но и реактивную составляющую индуктивного характера Q, необходимую для создания электромагнитных полей, без которых процессы преобразования энергии, рода тока и напряжения невозможны. Выражение реактивной мощности асинхронного двигателя (АД) можно представить и в таком виде:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

рефераты
Новости