рефераты рефераты
Главная страница > Дипломная работа: Мобільний термінал охоронної системи для автомобіля  
Дипломная работа: Мобільний термінал охоронної системи для автомобіля
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Мобільний термінал охоронної системи для автомобіля

Серед обраних компонентів наявні такі, що мають наступні діаметри виводів: 0,46мм (CD4052BCM); 0,5 мм (3R4SC-B, 3G4SC-B, 3Y4SC-B, TLP627-4, MF-RX375, WH2-2); 0,559 мм (1N4148); 1,2 мм (MICRO-FIT-2P, MICRO-FIT -6P, MICRO-FIT -8P, MICRO-FIT -10P, MICRO-FIT -20P); 1 мм (PV38Z).

Всі перелічені розміри мають однаковий порядок і близькі за значеннями, тому згрупуємо їх та оберемо єдиний розмір монтажного отвору для кожної з груп.

Отже, нехай монтажні отвори першої групи радіоелементів мають розмір D=0,6 мм., другої - D=1,1 мм, третьої - D=1,3 мм.

При виробництві ДП для створення отворів використовується ряд стандартних розмірів свердел за СТ СЭВ 235 (1-1935).

Діаметр всіх монтажних отворів повинен бути більше мінімального, який розраховується за формулою:

,

де γ - відношення мінімального діаметру металізованого отвору до товщини плати (для 3-го класу точності γ=0,33), h – товщина ДП.

 мм.

Для всіх монтажних отворів виконується нерівність.

Розрахуємо мінімальний діаметр контактної площадки навколо монтажного отвору для кожної з груп:

де d - діаметр виводу елементів;

- верхнє граничне відхилення діаметра отвору;

- верхнє граничне відхилення діаметра контактної площадки;

- нижнє граничне відхилення діаметра контактної площадки.

Для першої групи отворів:

=0,9 мм.

Для другої групи отворів:

=1,4 мм.

Для третьої групи отворів:


         =1,6 мм.

Окремо для забезпечення електричного зв’язку передбачимо наскрізні (перехідні) металізовані отвори у шарі металізації діаметром d = 0,5 мм. та d = 1 мм.

4.3.4.2  Розрахунок друкованих провідників і відстаней між ними

Розрахуємо номінальне значення ширини  провідника за формулою:

,

де - мінімальне значення номінальної ширини провідника, - нижнє відхилення ширини провідника.

Мінімальне значення номінальної ширини провідника:

,

де ρ- питомий електричний опір провідника (для міді ),

- довжина провідника, м;

- максимальний струм в провідниках кіл живлення ДП;

- максимальний струм в інших колах ДП;

=35мкм - товщина фольги ДП;

 напруга живлення в колах живлення ДП;

 В - напруга живлення в інших колах ДП;

Номінальне значення відстані між сусідніми елементами провідного рисунку, мм:

де  - мінімальна відстань між провідниками, - верхнє відхилення ширини провідника.

Мінімальне значення номінальної ширини провідника становитиме:

1)  Для кіл живлення:

мм.

2)  Для інших кіл:

мм.

Номінальне значення ширини провідника становитиме:

1)  Для кіл живлення:

мм.

2)  Для інших кіл:

 мм.

Номінальне значення відстані між сусідніми елементами провідного рисунку:

 мм.

 

4.3.5 Розрахунок маси

Розрахунок проводимо за формулою:

,

де - густина склотекстоліту, a, b, h – відповідно довжина, ширина та товщина ДП.

 г.

Для розрахунку маси радіоелементів скористаємося даними таблиці 4.3.3

г.

Масу друкованого вузла розраховуємо за формулою:

 г.

4.4  Розрахунки, що підтверджують працездатність виробу

4.4.1  Розрахунок теплового режиму

Конструктивно розроблений пристрій має вигляд алюмінієвого корпусу з жорстко закріпленою всередині друкованою платою. Проведемо аналіз теплового режиму розробленого радіоелектронного засобу (РЕЗ).

Бокові стінки пристрою мають отвори, тобто розроблений пристрій відноситься до РЕЗ у перфорованому корпусі.

Для проведення аналізу використаємо спрощену теплову модель за. Друкована плата (шасі) з розташованими на ній компонентами має горизонтальну орієнтацію і жорстко закріплена у корпусі з двох боків (останні дві сторони сперті на стінки корпусу). Таким чином конвективні потоки розвиваються тільки у верхньому напрямку, у нижньому відсіку (під шасі) конвекція практично відсутня (рух прошарків повітря затримується поверхнею шасі). При вертикальній орієнтації шасі висхідні та низхідні конвективні потоки розвиваються в обох відсіках. Через високу щільність компонування, променистий теплообмін між компонентами і корпусом РЕЗ пов’язаний лише з поверхнями, які безпосередньо зорієнтовані до корпусу. Теплова модель корпусу представлена на Рис.4.1.

Рис.4.1. Схематичне зображення розробленого РЕЗ (а), його теплова модель (б), теплова схема (в): 1 – корпус; 2 – шасі; 3 – елементи; 4 – нагріта зона. На рисунку позначено:

Р – потужність, яка виділяється в нагрітій зоні;

RЗК – тепловий опір нагріта зона-корпус РЕЗ;

RК – тепловий опір стінки корпусу;

RКС – тепловий опір корпус-середовище;

tЗ – температура нагрітої зони;

tКВ – температура внутрішньої поверхні корпуса;

tКН – температура зовнішньої поверхні корпуса;

tС – температура середовища.

Обравши найгірший випадок умов роботи пристрою, визначимо вихідні дані для терміналу:

·  Термінал встановлений на транспортному засобі під панеллю приладів:

·  Максимальна температура середовища tс=55°С;

·  Максимальна напруга живлення Uж=35 В;

·  Максимальний споживаний струм I=250 мА;

·  Матеріал корпусу – алюміній;

·  Характер навколишнього середовища – повітря.

·  Тиск повітря Н1 = Н2 = 0,1 МПа;

·  Коефіцієнт заповнення КЗ = 0,6;

·  Габаритні розміри корпуса дорівнюють 135х70х30 мм.

Розраховуємо поверхню корпуса блоку за формулою:

Sк = 2∙[L1L2 +L1+L2)L3] =2∙(0,135∙0,07+(0,135+0,07) 0,03)=0,031 м2

Визначаємо умовну поверхню нагрітої зони за формулою:

 

Sз=2∙[L1L2+(L1+L2)L3Kз]=2∙(0,135∙0,07+(0,135+0,07) 0,03∙0,6)=0,026 м2

Визначаємо питому потужність, яка розсіюється корпусом блоку за формулою:

qк = РЗ/SК,

де РЗ=Uж·I= 1,32максимальна потужність, яку споживають всі елементи пристрою.

qк = (12·110·10-3)/ 0,031 = 42,31 Вт/м2

Визначаємо питому потужність нагрітої зони за формулою:

qЗ = РЗ/SЗ = 1,32/0,026 = 50,21 Вт/м2

В загальному випадку перегрів корпусу визначається залежністю:

υ1=0,1472∙qк-0,2962∙10-3 qк2+0,3127∙10-6∙qк3,

де qк – питома потужність корпусу приладу, Вт/м2

υ1=0,1472∙42,31 -0,2962∙10-3∙42,312+0,3127∙10-6∙42,313= 5,72°С

Перегрів нагрітої зони визначається аналогічною залежністю


υ2=0,1390∙q3-0,1223∙10-3∙q32+0,0698∙10-6∙q33,

де q3 – питома потужність нагрітої зони, Вт/м2

υ2=0,1390∙50,21 -0,1223∙10-3∙50,212+0,0698∙10-6∙50,213=6,69°С

Зміна атмосферного тиску зовні корпусу впливає на перегрів корпусу приладу відносно температури навколишнього середовища, а в середині корпусу – на перегрів нагрітої зони відносно температури корпусу приладу. Виходячи з цього перегрів нагрітої зони в загальному випадку визначається як:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27

рефераты
Новости