рефераты рефераты
Главная страница > Курсовая работа: Пароконвектомат и его применение в области пищевой индустрии  
Курсовая работа: Пароконвектомат и его применение в области пищевой индустрии
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Пароконвектомат и его применение в области пищевой индустрии

в) в основном калорифере:

Q3 = Qк = L (I1 – I0), Дж/ч = Дж/с                      (11)

Q3 = Qк = 150,1094 (216923-53165,1) = 24581600,1143 Дж/ч/3600 = 6828,2223 Дж/с

2. Расход тепла:

а) с отработанным воздухом:

Q4 = L · I2, Дж/ч = Дж/с;                                              (12)

Q4 = 150,1094 ∙163,3759 = 24524,2583 Дж/ч /3600 = 6,8123 Дж/с

б) с готовым материалом (продуктом):

Q5 = Gк c2 t2, Дж/ч = Дж/с,                                (13)

где с2 – теплоемкость продукта после тепловой обработки,

с2 = с//м = 635,9866 Дж/(кг·град);

Q5 = 2,7083 ∙ 635,9866 ∙ 63 = 108513,8781 Дж/ч /3600 = 30,1427 Дж/с

в) при загрузке и выгрузке продукта (при транспортировке продукта):


Q6 = W cв·θ, Дж/ч = Дж/с, где                                     (14)

θ= t2; cв – теплоемкость воды, Дж/(кг·град), определяется по номограмме (см. приложение Б);

св = 1,005 ккал/кг∙Со = 4,21 ∙ 103 Дж/кг∙Со

Q6 = 3,7916 4,21 103 63 = 1005646,068 Дж/ч /3600 = 279,3461 Дж/с

г) теплота потерь (Q7) определяется из теплового баланса

Тепловой баланс:

Q1 + Q2 + Q3 = Q4 + Q5 + Q6 + Q7             (15)

Q1 + Q2 + Q3 - Q4 - Q5 - Q6 = Q7

Q7 = 7980581,2619 + 137710,43 + 24581600,1143 – 24524,2583 - 108513,8781 - 1005646,068 = 31561207,6018 Дж/ч /3600 = 8767,0021 Дж/с

Далее рассчитываем теплопотери при тепловой обработке на 1 кг испаренной влаги.

Рассмотрим последовательно все этапы расчета теплопотерь.

1. Теплопотери в окружающую среду:

а) средняя разность температур сред (в камере аппарата и в окружающей среде)

по длине аппарата:

tср = , °С                                   (16)

tср =

б) разность температур сред у торцов аппарата:

t´ср =  t1 – t0, °С                                   (17)

t´ср = 180 – 20 = 160°С

t´´ср =  t2 – t0, °С                                  (18)

t´´ср = 63-20 = 43°С

в) интенсивность теплопотерь:

- по длине аппарата:

qдл = K · tср , где                                        (19)

К – коэффициент теплопередачи (для всех стен аппарата), К ≈ 0,7

qдл = 0,7 · 89 = 62,3 ккал/(м2·ч) ∙ 4,19 ∙ 103 = 72,5103 Дж/(м2∙с)

с торцов аппарата:

q´т = K t´ср                                                        (20)

q´т = 0,7 · 160 = 112 ккал/(м2·ч)∙4,19∙103/3600 = 130,3556 Дж/(м2·с)  

q´´т = K t´´ср                                                      (21)

q´´т = 0,7 · 43 = 30,1 ккал/(м2·ч) ∙4,19∙103/3600= 35,0331 Дж/(м2·с)

г) теплопотери в окружающую среду:

qос = (qв · fв + qпот · fпот + qпол · fпол) · , Дж/кг,          (22)


qос =(72,5103·0,57+130,3556·0,6536+35,0331·0,6536) = 142313,2622 Дж/кг

где qв, qпот, qпол – это интенсивности теплопотерь в окружающую среду, рассчитываемые отдельно для вертикальных стен аппарата, потолка и пола;

fв, fпот, fпол – поверхности вертикальных стен, потолка и пола, определяемые, исходя из геометрических размеров аппарата;

fв = Н · Нш – для теплообменных процессов с плоской поверхностью нагрева, м2, где:

Н – высота, м; Нш – ширина, м;

fв = 0,75 0,76 = 0,57 м2;

fпот = l · Нш – для теплообменных процессов с плоской поверхностью нагрева, м2,

гдеl –длина, Нш – ширина

fпот = 0,86 ∙ 0,76 = 0,6536 м2;

В данном расчете соблюдается следующее равенство fпол = fпот , м2, причем интенсивность теплопотерь в окружающую среду определяется также в определенных единицах измерения последовательно:

qв = qдл =  72,5103  Дж/(м2·с);

qпот = q´т  = 130,3556 Дж/(м2·с);

qпол = q´´т = 35,0331 Дж/(м2·с);

W – масса влаги = 3,7916 кг/ч = 0,00105 кг/с

2. Теплопотери на нагрев материала:

 , Дж/кг,                                    (23)


где с´м – теплоемкость сырого материала, определяется следующим образом:

с´м = см + (1 – см), Дж/(кг·град),                (24)

с´м = 1059,311+(1–1059,311)= 265,5778 Дж/(кг·град)

где см = сп  – теплоемкость продукта, определяется по формуле:

сп = 41,87 · [0,3 + (100 – а)], Дж/(кг·град),       (25)

где а – начальная влажность продукта Хн , %;

сп=41,87·[0,3+(100–75)]= 1059,311 Дж/(кг·град)

с´´м = см + (1 – см),                                      (26)

с´´м =1059,311+(1–1059,311)= 635,9866 Дж/(кг·град)

где с// м – теплоемкость продукта после тепловой обработки     , Дж/(кг·град)     

ν – средняя температура материала, подвергаемого температурной обработке, определяется следующим образом:

ν  , °С;                                                              (27)


ν °С

Хк – конечная влажность продукта, 40%;

G2 = Gк= 2,7083 - масса продукта после тепловой обработки, кг/ч;

G1 = Gн = 6,5 – первоначальная закладка продукта, кг/ч.

 Дж/кг

3. Сумма теплопотерь на 1 кг испаренной влаги:

Σq =  + qос, Дж/кг

Σq =  + 142313,2622 = 188402,42 Дж/кг

Расчет калорифера

На первом этапе определяем плотность воздуха, проходящего через калорифер:

ρ = ρ0, кг/м3,                                                               (28)

где ρ0 – стандартное значение плотности воздуха при нормальных условиях, кг/м3:

ρ0 =  ,                                                                  (29)

ρ0

где Мвозд – молекулярная масса воздуха, г/моль

Т0 – температура воздуха при нормальных условиях, 273 К

Т – температура окружающего воздуха, К: Т =  t0 + 273 = 20 + 273 = 293 К

р0 – парциальное давление воздуха при нормальных условиях; 760 мм рт. ст.

р – парциальное давление окружающего воздуха,  735 мм рт. ст.

Далее рассчитываем потери тепла в окружающую среду через калорифер:

Qп = Fбок · (tст – t0) · α, Дж/с,                                        (30)

где Fбок– боковая поверхность барабана калорифера;

tст – температура стенки барабана калорифера с внешней стороны tст = t4 =35,°С;

t0 – температура окружающей среды = 20°С;

α – коэффициент теплоотдачи от стенки барабана калорифера в окружающую среду,

Поэтапно потери тепла определяются следующим образом:

1) Определить и охарактеризовать режим движения окружающего воздуха относительно наружной поверхности барабана калорифера (по критерию Рейнольдса):

Re = ,                                                               (31)

где l – высота аппарата, l = H = 0,75 м;

ρв – плотность воздуха при температуре 20 град, ρв = ρ0 , кг/м3;

ρв кг/м3

где ρ0 – стандартное значение плотности воздуха при нормальных условиях, кг/м3, определяется по формуле (32) , Т0 – температура воздуха при нормальных условиях, 273 К; Т – температура окружающего воздуха, К: Т = t0 + 273 = 293 К;

μ – вязкость воздуха при температуре t0 , ,

µ = 0,018·10-3 =0,000018 ;

ωв – относительная скорость движения воздуха:

ωв =  , м/с,                                                     (32)

ωв  = 0,0262 м/с  

где dнар – наружный диаметр калорифера, м;

n – число барабанов калорифера, n = 1.

Re =

2) Коэффициент теплоотдачи от стенки барабана калорифера в окружающую среду за счет вынужденной конвекции:

αк,                                                   (33)

где Nu – коэффициент Нуссельта, Nu = 0,018 · Re0,8 · εi ,

Страницы: 1, 2, 3, 4, 5, 6, 7, 8

рефераты
Новости