рефераты рефераты
Главная страница > Дипломная работа: Проектирование адиабатной выпарной установки термического обессоливания воды  
Дипломная работа: Проектирование адиабатной выпарной установки термического обессоливания воды
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Проектирование адиабатной выпарной установки термического обессоливания воды

3.1.18.3.2 Принимаем среднюю скорость жидкости в трубах w=3 м/с (стр. 57 [1]).

3.1.18.3.3 Диаметр трубок, длину, материал и тип пучка – аналогично ранее рассмотренным конденсаторам.

3.1.18.3.4 Определим количество трубок в конденсаторе исходной воды по уравнению неразрывности аналогично предыдущим расчётам nисх


3.1.18.3.5 Определим количество трубок в конденсаторе охлаждающей воды по уравнению неразрывности nохл

3.1.18.3.6 Суммарное число трубок в конденсаторе девятой ступени составляет nS=nисх+nохл=338+1709=2047 шт.


3.1.18.3.7 Определим число ходов в конденсаторе z по необходимой площади теплообмена Fк9 из уравнения неразрывности принимаем число ходов в конденсаторе седьмой ступени z=6.


3.1.18.3.8 Определим геометрические размеры трубного пучка

3.1.18.3.8.1 Из геометрических размеров камеры испарения, с учётом необходимого числа ходов, принимаем ширину всего трубного пучка Bп=4 м, а ширину одного хода Bп1=0,65 м.

3.1.18.3.8.2 Отсюда найдём количество трубок в горизонтальном ряду одного хода пучка n1 принимаем n1=20 шт.


3.1.18.3.8.3 Тогда количество рядов составит n2

n2=n/n1=2047/20=102,4;

принимаем количество трубок в вертикальном ряду n2=110 шт.

3.1.18.3.8.4 Высота трубного пучка составит Hтр

Hтр=n2´s+dн=110´32´10-3+25´10-3=3,545 м.

3.1.18.3.8.5 Уточнённое количество труб в пучке составит

nS=n1´n2=20´110=2200 шт.

3.1.18.3.9 Уточним суммарную площадь поверхности теплообмена конденсаторов девятой ступени Fк9’

Fк9’=p´nS´dср´l´z=3,14´2200´22,5´10-3´6´6=5595 м2.

3.1.18.3.10 Сравниваем полученную величину со значением поверхности теплообмена, полученным из теплового расчёта: Fк9’=5595 м2 больше Fк9=5492 м2, делаем вывод, что принятая из условия обеспечения необходимой скорости движения площадь поверхности конденсатора является достаточной. Запас по площади составляет DF7=1,9 %.

3.2 Выбор и расчёт переточных устройств и высоты уровней жидкости в камерах испарения

3.2.1 Камеры испарения разделены между собой поперечными перегородками, в нижней части которых выполнены специальные перепускные барьеры, создающие необходимую разницу давлений между смежными ступенями.

Весьма важно выбрать рациональный тип перепускного устройства, так как от этого зависят равномерность испарения воды, вынос солей с паром в сепаратор, а также протекание вторичного пара в соседние ступени.

Переточные устройства могут представлять собой как непосредственно устройства ввода – прямоугольное или круглое придонное отверстие, цилиндрические, конические и другие насадки, так и канал, образованный стенками камеры с вертикальными или наклонными перегородками и отбойными козырьками. Подача воды в камеру испарения может осуществляться также через подводящие трубы, снабжённые дросселирующими или распределительными устройствами.

Применяемые в камерах перегородки (одна или несколько) формируют ток и удлиняют путь жидкости в камере, турбулизируют её и уменьшают обратные токи, что улучшает характеристики процесса вскипания. Однако применение перегородок увеличивает гидравлическое сопротивление, повышает уровень жидкости, способствует возникновению застойных зон в камерах.

Наиболее приемлемым является безбарботажный режим реализации перепуска жидкости из одной камеры в другую, который позволяет реализовать наличие перегородок в камерах. При таком режиме улучшается прокипание жидкости и допустимо большее напряжение объёма камеры по пару, чем в барботажном режиме без существенного снижения качества дистиллята.

3.2.2 Анализируя существующие типы переточных [8], [диссертация] устройств выбираем фазовый порог для осуществления безбарботажного режима с перегородкой в камере испарения.

3.2.3 Принимая равный перепад давления по ступеням найдём падение давления в одной ступени Dр


где р1=1,01325´105Па и р9=7,3749´103Па – температура насыщения соответственно в первой и последней камерах испарения.

3.2.4 Определим геометрические размеры данного типа перепускного устройства применительно к проектируемой установке по характеристикам на стр. 186 [20]

3.2.4.1 Принимаем уровень жидкости в первой камере испарения равный Hс1=0,5 м.

3.2.4.2 Высота щели перепускного устройства из первой ступени во вторую составляет HB

HB=0,476´Hc1=0,476´0,5=0,238 м.

3.2.4.3 Высота перегородки в камере испарения составит HA1

HA1=0,75´Hc1=0,75´0,5=0,375 м.

3.2.4.4 Расстояние от точки входа рассола в камеру до перегородки l0


l0=0,15´L=0,15´4,6=0,69 м,

где L=4,6 м – длина камеры испарения определённая ранее.

3.2.4.5 Площадь сечения перепускного устройства составляет Fпер.

Fпер=HB´B=0,238´6=1,428 м2,

где B=6 м – длина камеры испарения.

3.2.4.6 Для данного типа переточного устройства находим величину коэффициента гидравлического сопротивления по диаграмме 4-14 на стр. 124 для отношения F/F0 =0,35 [7] z=10.

3.2.4.7 Находим скорость истечения рассола из первой ступени во вторую из уравнения неразрывности w1


где r1=962,82 кг/м3 – плотность воды при температуре в первой камере испарения по таблице 2-1 [18].

3.2.4.8 По формуле (7-44) [27] находим высоту столба жидкости во второй камере испарения Hс2


где r2=967,34 кг/м3 – плотность рассола при температуре во второй ступени по таблице 2-1 [18].

3.2.4.9 Высота перегородки во второй камере испарения составит HA2

HA2=0,75´Hc2=0,75´0,597=0,448 м.

3.2.4.10 Аналогично находим высоту перегородки и уровней жидкости в остальных камерах испарения, принимая площадь сечения перепускного устройства равной во всех ступенях

3.2.4.10.1 Находим скорость истечения рассола из второй ступени в третью из уравнения неразрывности w2


3.2.4.10.2 Высота столба жидкости в третьей камере испарения Hс3 по формуле (7-44) [27]

где r3=971,63 кг/м3 – плотность рассола при температуре в третей ступени по таблице 2-1 [7].


3.2.4.10.3 Высота перегородки в третьей камере испарения составит HA3

HA3=0,75´Hc3=0,75´0,717=0,538 м.

3.2.4.10.4 Скорость истечения рассола из третьей ступени в четвёртую из уравнения неразрывности w3


3.2.4.10.5 Высота столба жидкости в четвёртой камере испарения Hс4 по формуле (7-44) [27]


где r4=975,71 кг/м3 – плотность рассола при температуре в четвёртой ступени по таблице 2-1 [7].

3.2.4.10.6 Высота перегородки в четвёртой камере испарения составит HA4

HA4=0,75´Hc4=0,75´0,875=0,656 м.

3.2.4.10.7 Скорость истечения рассола из четвёртой ступени в пятую из уравнения неразрывности w4


3.2.4.10.8 Высота столба жидкости в пятой камере испарения Hс5 по формуле (7-44) [27]


где r5=979,54 кг/м3 – плотность рассола при температуре в пятой ступени по таблице 2-1 [18].

3.2.4.10.9 Высота перегородки в пятой камере испарения составит HA5

HA5=0,75´Hc5=0,75´1,056=0,792 м.

3.2.4.10.10 Скорость истечения рассола из пятой ступени в шестую из уравнения неразрывности w5


3.2.4.10.11 Высота столба жидкости в шестой камере испарения Hс6 по формуле (7-44) [27]


где r6=983,19 кг/м3 – плотность рассола при температуре в шестой ступени по таблице 2-1 [18].

3.2.4.10.12 Высота перегородки в шестой камере испарения составит HA6

HA6=0,75´Hc6=0,75´1,260=0,945 м.


3.2.4.10.13 Скорость истечения рассола из шестой ступени в седьмую из уравнения неразрывности w6

3.2.4.10.14 Высота столба жидкости в седьмой камере испарения Hс7 по формуле (7-44) [27]


где r7=986,46 кг/м3 – плотность рассола при температуре в седьмой ступени по таблице 2-1 [7].

3.2.4.10.15 Высота перегородки в седьмой камере испарения составит HA7

HA7=0,75´Hc6=0,75´1,487=1,115 м.

3.2.4.10.16 Скорость истечения рассола из седьмой ступени в восьмую из уравнения неразрывности w7


3.2.4.10.17 Высота столба жидкости в восьмой камере испарения Hс8 по формуле (7-44) [27]


где r8=989,55 кг/м3 – плотность рассола при температуре в восьмой ступени по таблице 2-1 [18].

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25

рефераты
Новости