рефераты рефераты
Главная страница > Дипломная работа: Методика решения задач по теоретическим основам химической технологии  
Дипломная работа: Методика решения задач по теоретическим основам химической технологии
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Методика решения задач по теоретическим основам химической технологии

8. Для изготовления листового стекла раскаленную стеклянную ленту подают на конвейер. Лента перекатывается с одного металлического ролика на другой, постепенно остывая. При этом не застывшая еще стеклянная лента прогибается, на стекле образуются неровности, поэтому его приходится долго полировать. Впервые столкнувшись с этой проблемой, инженеры предложили сделать ролики как можно тоньше, чтобы стеклянная лента получалась ровнее. Но чем тоньше ролики, тем сложнее изготовить из них огромный - в десятки метров — конвейер. Если толщина ролика равна толщине спички, на каждый метр конвейера потребуются 500 роликов и устанавливать их придется прямо-таки с ювелирной точностью. Как усовершенствовать процесс изготовления листового стекла?

Решение:

Попробуем опять применить принцип дробления. Уменьшаем диаметр роликов. Минимальная толщина — один атом. Раскаленная стеклянная лента движется по слою шариков-атомов. Отличный конвейер, идеально ровный.

Итак, под стеклянную ленту надо насыпать шарики-атомы. Это не могут быть атомы газа (они сразу улетучатся) или твердого тела (они не будут свободно двигаться). Остается одна возможность — использовать атомы жидкости. Какую жидкость взять для такого конвейера? Не будем искать наугад, используем знания по химии (или хотя бы справочники). Прежде всего, нужна жидкость легкоплавкая, но у нее должна быть высокая температура кипения, иначе она легко закипит, и поверхность стекла покроется пузырьками. Плотность жидкости должна значительно превышать плотность стекла (2,5 г/см3), иначе стеклянная лента не будет держаться на ее поверхности. Итак, искомое вещество имеет температуру плавления не выше 200-300°С, температуру кипения не ниже 1500 °С, плотность не менее 5-6 г/см3.

Таким сочетанием свойств обладают только металлы. Если не брать во внимание редкие металлы, претендентов совсем мало: висмут, олово, свинец. Висмут дорог, пары свинца ядовиты, остается олово. Итак, вместо конвейера — длинная ванна с расплавленным оловом. Вместо роликов — атомы.

Система перешла на микроуровень, появилась возможность дальнейшего развития. И действительно, сразу после этого изобретения потоком пошли патенты на различные усовершенствования. Например, если через олово пропустить ток, то с помощью магнитов можно придавать его поверхности любую форму - только на эту тему сделано несколько сотен изобретений.

9. При выплавке чугуна в домне образуется ишак. Шлак, имеющий температуру 1000°С, спивают в большие ковши и на железнодорожных платформах отвозят на переработку. Расплав шлака — ценное сырье для изготовления строительных материалов. Но затвердевший шлак перестает быть таким сырьем. Снова расплавлять его невыгодно. В ковше сначала весь шлак жидкий, однако при транспортировке на его поверхности образуется и быстро нарастает твердая корка. Приходится пробивать ее с помощью специальных (довольно громоздких) устройств. Корка удерживает часть жидкого шлака. В результате из ковша сливают только 2/3 шлака, остальное идет на свалку. К тому же нужно потратить немало труда, чтобы освободить ковш от затвердевшего шлака, а потом вывезти этот шлак с территории завода. Было бы выгодно сделать ковш с хорошей теплоизоляцией, но она займет много места, ковш станет шире, а это недопустимо при железнодорожных перевозках. Если же сделать теплоизолирующую крышку на ковш, который размером с комнату, то и устанавливать, и снимать ее придется с помощью крана. Предложите решение.

Решение:

Модель задачи: есть раскаленный шлак, а над ним холодный воздух. ИКР: холодный воздух сам не дает застыть шлаку. Применяем прием «обратить вред в пользу»: холодный воздух должен защищать шлак от холодного воздуха.

Какая зона воздуха не соответствует этому требованию? Очевидно, та, которая непосредственно соприкасается с горячей поверхностью расплавленного шлака. Теперь видно физическое противоречие: эта зона (там сейчас слой холодного воздуха) должна быть чем-то заполнена, чтобы задерживать тепло, и эта зона не должна быть ничем заполнена, чтобы можно было свободно заливать и выливать шлак. В подобных случаях не вводят посторонние вещества, а видоизменяют уже присутствующие («использовать принцип однородности») – шлак и воздух. Возможны только три ответа.

Изменять воздух – нагревать тот слой, который лежит у поверхности шлака. Это плохое решение: придется ставить горелки, а они будут загрязнять атмосферу.

Изменять шлак – покрыть поверхность жидкого шлака шариками из твердого шлака. Термоизоляция получится неплохая, но возникает масса неудобств: надо изготавливать шарики, как-то удерживать их в ковше, когда сливается шлак.

Использовать смесь шлака и воздуха – смешать компоненты и получить пену. Отличный теплоизолятор. Залили шлак в ковш, сделали слой пены, получили прекрасную теплозащитную крышку. Сливать шлак можно, не обращая внимания на эту крышку, - жидкий шлак свободно пройдет сквозь пену. Крышка есть, и как бы нет. Задача в принципе решена, нужно выяснить чисто технический вопрос: как получить пену? Простейший способ – при заливке шлака подавать одновременно немного воды. Обратите внимание на парадокс: чтобы шлак сохранил тепло его поливают холодной водой.

10. Хороший термос долго (до 2 суток) хранит тепло, но когда жидкость в термосе остыла, то для нагревания ее необходимо вылить из термоса, нагреть и снова залить. А если для этого нет условий? Почему бы воду не нагреть сразу в термосе? Но колба термоса не герметична, в простенках вакуум. Если в колбу ставить еще один металлический цилиндр, чтобы в нем нагревать воду, вес изделия увеличится. Это грубое решение проблемы. Изобретите термос – чайник.

Решение:

Формулируем техническое противоречие: вакуум в колбе должен быть теплопроводным, когда вода нагревается, и не должен проводить тепло, когда нагревание прекращено. Заменяем слово вакуум на словом вещество: вещество в сосуде должно проводить тепло при нагревании сосуда и быть теплоизолятором при прекращении нагревания. Лучший теплоизолятор тепла – вакуум. Уточняем: вещество появляется при нагревании и проводит тепло; вещество исчезает при прекращении нагревания, образуется вакуум. Для решения этой задачи более всего подходят гидриды металлов, т.к. они обладают способностью поглощать водород при охлаждении и выделять при нагревании. А водород хороший проводник тепла. Итак, в термосе между стенками глубокий вакуум, а на дне - горсть гидрида. Если немного нагреть гидрид, то выделившийся водород станет проводником тепла между стенками. Выключим нагрев, и водород полностью поглотится гидридом, восстановится вакуум. Внутри термоса может быть аккумулятор тепла и холода. По энергоемкости водородные термосы в 20 раз превосходят электробатареи.


Выводы

1. Определена тематика задач по теоретическим основам химической технологии в рамках изучения курса прикладная химия.

2. Составлены и подобраны задачи по выбранным темам.

3. Показано, что при решении задач по прикладной химии студенты испытывают затруднения при математических расчетах с использованием дифференциального и интегрального исчисления, разложением сложного многостадийного процесса в условии задачи на отдельные стадии и проведении расчетов по всей совокупности стадий.

4. Разработана методика решения задач, в качестве примера представлены подробные решения типовых задач каждого раздела и приведены задачи для самостоятельного решения.

5. Показано, что курс прикладная химия, изучаемый на завершающем этапе подготовки будущих учителей химии следует рассматривать как курс обобщения, повторения и систематизации ранее приобретенных химических знаний.


Список литературы

1. Абкин Г.Л. Методика решения задач по химии. М.: Просвещение, 1971. – 200 с.

2. Аликберова Л.Ю., Хабарова Е.И. Задачи по химии с экологическим содержанием. М.: Центрхимпресс, 2001. – 70 с.

3. Андреева М.П. Овладение студентами педагогических ВУЗов методическими приемами обучения учащихся решению задач по химии. // Химия и методика преподавания. 2005, № 3. – С. 23-26.

4. Аранская О.С. Сборник задач и упражнений по химической технологии и биотехнологии. Минск: Университетское, 1989. – 296с

5. Аркавенко Л.Н., Гапонцеа В.Л., Белоусова О.А. Для чего классифицировать расчетные задачи. // Химия в школе. 1998, № 3. – С. 60-63.

6. Артемьев В.П. Задание по методике преподавание химии. Тесты и усложненные задачи (задачи экологического содержания). Пенза, 2002. 122 с.

7. Архангельская О.В., Тюльков И.А. Трудная задача? Начнем по порядку…

// Химия в школе. 2003, № 2. – С. 51-55.

8. Ахметов М.А. Конспект лекции по общей химии. Введение в термодинамику химических реакций. // Первое сентября. 2005, № 15. – С. 35-37.

9. Безуевская В.А. Химические задачи с экологическим содержанием. // Химия в школе. 2000, №2. – С. 59-61.

10. Бердоносов С.С. Конспект лекции по общей химии. Тепловые эффекты химических реакций. // Первое сентября. 2005, №20 – С. 11-18.

11. Бердоносов С.С. Конспект лекции по общей химии. Равновесие. // Первое сентября. 2005, №21. – С. 18-23.

12. Бондарь Д.А., Гариев И.А. Трудная задача? Начнем по порядку… // Химия в школе. 1997, № 3. – С. 44-48.

13. Бондарь Д.А., Тюльков И.А. Трудная задача? Начнем по порядку. // Химия в школе. 1999, №2. – С. 31-34.

14. Бондарь Д.А., Гариев И.А. Трудная задача? Начнем по порядку… // Химия в школе. 1997, № 6. – С. 61-64.

15. Веденяпин А.В. Решение расчетных задач по химии. М.: Просвещение, 1972. – 160 с.

16. Гаврусейко Н.П. Наш опыт решения расчетных задач. // Химия в школе. 1981, № 1. – С. 46-50.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

рефераты
Новости