рефераты рефераты
Главная страница > Курсовая работа: Расчет тарельчатой ректификационной колонны  
Курсовая работа: Расчет тарельчатой ректификационной колонны
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Расчет тарельчатой ректификационной колонны

∆ρмтр= (∑ξмтр)∙ρмтр∙ω2мтр /2

Скорость жидкости в межтрубном пространстве определяют по формуле

ωмтр=Gмтр/(Sмтр∙ρмтр

где Sмтp — наименьшее сечение потока в межтрубном пространстве

(см. табл. 2.3—2.5).

Коэффициенты местных сопротивлений потоку, движущемуся в межтрубном пространстве:

ξтр1= 1,5 — вход и выход жидкости;

ξтр2= 1,5 — поворот через сегментную перегородку;

ξтр3= 3m/Re0,2мтр — сопротивление пучка труб [13, с. 455],

где Reмтр=Gмтрdн/(Sмтрµмтр); m — число рядов труб, которое приближенно можно определить следующим образом.

Общее число труб при их размещении по вершинам равносторонних треугольников равно п= 1 + 3а + 3а2, где а — число огибающих трубы шестиугольников (в плане трубной доски). Число труб в диагонали шестиугольника b можно определить, решив квадратное уравнение относительно а:

b = 2а+l=2V(n—1) /3 + 0,25.

Число рядов труб, омываемых теплоносителем в межтрубном пространстве, приближенно можно принять равным 0,5b, т. е.

m =

Сопротивление входа и выхода следует также определять по скорости жидкости в штуцерах, диаметры условных проходов которых приведены в таблице.

Число сегментных перегородок зависит от длины и диаметра аппарата. Для нормализованных теплообменников эти числа приведены в табл. 2.7.

Расчетные формулы для определения гидравлического сопротивления в трубном и межтрубном пространствах окончательно принимают вид:

 

где г — число ходов по трубам;

∆ρмтр =  

где х — число сегментных перегородок; т — число рядов труб, преодолеваемых потоком теплоносителя в межтрубном пространстве.

- Расчет гидравлического сопротивления. Сопоставим три выбранных варианта кожухотрубчатых теплообменников по гидравлическому сопротивлению.

 Вариант 1К. Скорость жидкости в трубах

ωтр=G1/(Sтр∙ρ1)=6/(0,018∙986)=0,338 м/с

Коэффициент трення рассчитывают по формуле (2.31):

Диаметр штуцеров в распределительной камере dTp ш = 0,150 м; скорость в штуцерах

ωтр.ш = 6,0∙4/(π∙0,152∙986) =0.344 м/с.

В трубном пространстве следующие местные сопротивления: вход в камеру и выход из нее, три поворота на 180°, четыре входа в трубы и четыре выхода из них.

В соответствии с формулой (2.35) гидравлическое сопротивление трубного пространства равно

= =2716 + 873+175 = 3764 Па.

Число рядов труб, омываемых потоком в межтрубном пространстве, m≈; округляя в большую сторону, получим т = 9. Число сегментных перегородок х= 18 (см. табл. 2.7). Диаметр штуцеров к кожуху dмтр.ш = 0,200 м, скорость потока в штуцерах:

Wмтр.ш = 21,8∙4/(π∙0,22∙996)=0,697 м/с.

Скорость жидкости в наиболее узком сечении межтрубного пространства площадью Sмтp=0,040 м2 (см. табл. 2.3) равна:

ωмтр =21,8/(0,040-996) =0,547 м/с.


В межтрубном пространстве следующие местные сопротивления: вход и выход жидкости через штуцера, 18 поворотов через сегментные перегородки (по их числу х = 18) и 19 сопротивлений трубного пучка при его поперечном обтекании (х + 1).

В соответствии с формулой (2.36) сопротивление межтрубного пространства равно

∆ρмтр = = 10 902+4023 + +725=15 650 Па.

Вариант ЗК. Аналогичный расчет дает следующие результаты:

ωтр = 0,277 м/с; λ=0,0431; ωтр ш = 0,344 м/с; ∆ртр = 2965 Па; ωтр = 0,337 м/с; ωмтр.ш = 0,446 м/с; m= 12; х = 8; ∆рмтр = 3857 Па.

Сопоставление этого варианта с вариантом 1К показывает, что, как и ожидалось, по гидравлическому сопротивлению вариант ЗК лучше.

Вариант 4К. Результаты расчета: ωтр=0,304 м/с; λ=0,0472; ωтр.ш = 0,344 м/с; ∆ртр = = 3712 Па; ωмтр = 0,337 м/с; ωмтр.ш = 0,446 м/с; m=15; x: = 6;

∆рмтр = 3728 Па.

Сопротивление этого теплообменника мало отличается от сопротивления предыдущего, а его масса на 400 кг меньше. Поэтому из дальнейшего сравнения вариант ЗК можно исключить, считая конкурентоспособными лишь варианты 1К и 4К. Выбор лучшего из них должен быть сделан на основе технико-экономического анализа.

2.3 Расчет пластинчатого теплообменника

Для той же технологической задачи, что и в предыдущем разделе, рассчитать и подобрать нормализованный пластинчатый теплообменник.

Эффективность пластинчатых и кожухотрубчатых теплообменников близка. Поэтому ориентировочный выбор пластинчатого теплообменника целесообразно сделать, сравнив его с лучшим вариантом кожухотрубчатого. Из таблицы следует, что .поверхности, близкие к 100 м2, имеют теплообменники с пластинами площадью 0,6 м2. Для уточненного расчета выберем три варианта: '

1П: f=80 мг, число пластин N=136, тип пластин 0,6;

 2П: F = 63 м2, число пластин N=108, тип 0,6;

ЗП: F = 50 м2, число пластин N=86, тип 0,6.

Расчет по пунктам I—4 аналогичен расчету в разд. 2.4.1, поэтому опускаем его.

- Уточненный расчет требуемой поверхности.

Вариант 1П. Пусть компоновка пластин самая простая: Сх:68/68, т. е. по одному пакету (ходу) для обоих потоков. Скорость горячей жидкости в 68 каналах с проходным сечением 0,00245 м2 (см. табл. 2.14) равна

ω1 = 6,0/ (986 • 68• 0,00245) = 0,0365 м/с.

Эквивалентный диаметр каналов dэ = 0,0083 м (см. табл. 2.14); тогда

Re, = 0,0365∙0,0083∙986/0,00054 = 553> 50,

т. е. режим турбулентный, поэтому по формуле (2.20) находим:

α1 = (0.662/0,0083) 0,135∙5530,73∙3,420,43= 1836 Вт/(м2∙К).

Скорость холодной жидкости в 68 каналах:

ω2 = 21,8/ (996∙68∙0,00245) =0,1314 м/с;

Re2 = 0,1314 • 0,0083 • 996/0,000804 = 1351 > 50:


α2= (0,618/0,0083) 0,135∙13510,73∙5,440,43 = 4017 Вт/(м2∙К).

Сумма термических сопротивлений гофрированной пластины из нержавеющей стали толщиной 1,0 мм (см. табл. 2.14) и загрязнений составляет:

∑δ/λ = 1,0∙10-3/17.5+ 1/2900+ 1/2900 = 0,000747 м2∙К/Вт.

 

Коэффициент теплопередачи равен:

К= (0,000747 +1/1836 + 1/4017)-'=649 Вт/(м2-К).

Требуемая поверхность теплопередачи

 

F= 1822 650/(649∙40,8) =68,8 м2.

Теплообменник номинальной поверхностью F1п = 80 м2 подходит с запасом

∆= (80 — 68,8) 100/68,8=16,3%.

 

Его масса М1п=1690 кг (см. табл. 2.13).

Вариант 2П. Схема компоновки пластин Сх:54/54. Результаты расчета:

ω1= 6,0/(986∙54∙0,00245) =0,046 м/с; Re1=0,046∙0,0083∙986/0,00054 = 697;

α1 = 1836(697/553)0,73 = 2147 Вт/(м2∙К);

ω2=21,8/(996∙54∙0,00245) =0,165 м/с;


Re2 = 0,165∙0,0083∙996/0,000804 =1697;

 α2 = 4017(1697/1351)0,73 = 4744 Вт/(м2∙К);

К= (1/2174+ 1/4744+ 0,000747)-1=705 Вт/(м2∙К);

F =1 822 650/(40,8∙705) =63,3 м2.

Номинальная поверхность F2п = 63,0 м2 недостаточна, поэтому необходимо применить более сложную компоновку пластин. Очевидно, целесообразно увеличить скорость движения теплоносителя с меньшим коэффициентом теплоотдачи, т. е. горячей жидкости. При этом следует иметь в виду, что несимметричная компоновка пластин, например по схеме Сх:(27+ 27)/54, приведет к уменьшению средней движущей силы, поскольку возникнет параллельно-смешанный вариант ' взаимного, направления движения теплоносителей. При симметричной компоновке, т. е. при одинаковом числе ходов для обоих теплоносителей, сохраняются противоток и среднелогарифмическая разность температур.

Рассмотрим Сх: (27+27)/54. Скорость горячей жидкости и число Re1 возрастут вдвое, а коэффициент теплоотдачи ai увеличится в соответствии с формулой (2.20) в 20,73= 1,66 раза. Коэффициент α2 останется неизменным. Получим:

α1=2174∙1,66 = 3605 Вт/(м2∙К);

К=( 1/3605+ 1/4744+0,000747)-1=810 Вт/(м2∙К).

В данном случае поправку на среднелогарифмическую движущую силу можно найти так же, как для кожухотрубчатых теплообменников с одним ходом в межтрубном пространстве и четным числом ходов в трубах:

ε∆t = 0,813 (см. разд. 2.4.1).

Тогда

∆tср = 40,8∙0,813 = 33,2°С.

Требуемая поверхность теплопередачи

F=1822 650/(810∙33,2) =67,8 м2.

Номинальная поверхность F2п=63,0 м2 по-прежнему недостаточна.

Перейдя к симметричной компоновке пластин, например по схеме Сх: (27 + 27)/(27 + 27), вернемся к схеме чистого противотока с одновременным увеличением α2 в 1,66 раза:

α2 = 4744 •1,66 = 7875 Вт/ (м2 • К);

К = (I /3605 + 1 /7875 + 0.000747) -1 = 869 Вт/ (м2 • К);

F= 1 822 650/(40,8∙869) =51,4 м2.

Теперь нормализованный теплообменник подходит с запасом

∆= (63 — 51,4) 100/51,4=22,6%.

В этом теплообменнике скорость горячей жидкости

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9

рефераты
Новости