рефераты рефераты
Главная страница > Дипломная работа: Математическое моделирование роста доходности страховой компании  
Дипломная работа: Математическое моделирование роста доходности страховой компании
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Математическое моделирование роста доходности страховой компании

Таб.1

Можно исследовать значения k1 и k2 для других значений параметров, полагая m= 0.05, получаем таблицу 2.

a 0 1/4 1/2 3/4  1

k1

6.8 6.8 6.8 6.8 6.8

k2

3.4 3.23 3.15 3.13  3

Таб.2

Окончательно заметим, что изменение ставки комиссионного вознаграждения m при фиксированном капитале К ведет к уменьшению капиталовооруженности k.

§2 Математический анализ многомерной модели роста доходности страховых компаний

Рассматриваемая модель имеет вид:

Максимизировать

m R(t) + (1-a) R(t)) e-rt dt

при условии

(1-m)R(t)=+(Cm+1)L(t) + dK(t)+ K’(t)+ p(t)K,

0<d<1, p(t)³pc, 0<g+d+p<1,0<a<1, 0<m<1

L(0)= L0, L0>0 K(0)= K0,K0>0

K0 - начальный оборотный капитал фирмы, L0 - начальный фонд оплаты труда штатных работников.

Будем рассматривать случай для n=2. Тогда рассматриваемая модель примет вид:

Максимизировать

(am (b1+b2)R(t) + (1-a) R(t)) e -rt dt

при условии

(1-m)R(t)=g(K1(t)+K2(t))+CmL(t)+L(t)+dK(t)+K’(t)+p(t)K(t),

0<d<1, p(t)³pc, 0<g+d+p<1, 0<a<1, 0<m<1

L(0)=L0, L0>0 K(0)= K0, K0>0

Выпишем функцию Лагранжа, учитывая (2.3) (гл.1) для случая n=2,(1.1) и тот факт, что F(K1(t), K2(t),L(t)) однородна, получим:

W(t)=(1- a+am(b1+b2))L(t)je-rt+

l(t)(-(1-m)L(t) j + (g+d+pc)K(t) + (Cm + 1)L(t) + K’(t))

В результате исходная модель примет вид:

 W(t) dt ® max                                                                            (2.1)

при условиях L(0)=L0, K(0)=K0                                                       (2.2)

0<d<1, 0<g+d+pc<1, 0<a<1, 0<m<1                                                  (2.3)

Далее, выпишем систему уравнений Эйлера - Лагранжа, вытекающую из (2.1)-(2.3)

(1-a+am(b1+b2))j’k1/le-rt+l(t)(g+d+pc-(1-m)

j’  )-l’(t)=0

(1-a+am(b1+b2))j’k2/l)e-rt+l(t)(g+d+pc-(1-m)j’k2/l) -l’(t)=0

l(t)=[(1-a+am(b1+b2))(j’k1/l+ j’k2/l -j+e-rt]/[(1-m)(j’k1/l+

j’ -j-Cm-1]

K’(t)-(1-m)L(t)j  +(g+d+pc)K(t)+(Cm+1)L(t)=0

Перепишем последнюю систему в удобном виде.

l’(t)=(1-a+am(b1+b2))j’k1/l l)e-rt+

l(t)(g+d+pc-(1-m)j’k1/l l)

l’(t)=(1-a+am(b1+b2))j’k2/l le-rt+

l(t)(g+d+pc-(1-m)j’k2/l l)

l(t)=[(1-a+am(b1+b2))(j’k1/l+ j’k2/l -j+e-rt]/[(1-m)(j’k1/l+

j’ -j-Cm-1]

K’(t)=(1-m)L(t)j -(g+d+pc)K(t)-(Cm+1)L(t) (2.4)

Обозначим


k(t)=K(t)/L(t), k1(t)=K1(t)/L(t), k2(t)=K2(t)/L(t) и n(t)=(dL/dt)/L     (2.5)

и проведем аналогичные §1 рассуждения. Тогда справедливо соотношение (1.7).

Для упрощения полученной системы введем еще одно обозначение:

z(k(t)) = j’k1(t)(k1(t),k2(t)) k1(t) +j’k2(t)(k1(t),k2(t)) k2(t)-j(k1(t),k2(t))

Разделив уравнение (2.4) на L(t) и учитывая обозначения, получим:

l’(t)=(1-a+am(b1+b2))j’k1(k1(t), k2(t))e-rt+

l(t)(g+d+pc-(1-m)j’k1(k1(t), k2(t))) (2.6)

l’(t)=(1-a+am(b1+b2))j’k2(k1(t),k2(t))e-rt+

l(t)(g+d+pc-(1-m)j’k2(k1(t), k2(t))) (2.7)

l(t)=[(1-a+am(b1+b2))z(k1(t),k2(t))e-rt]/[(1-m)(z(k1(t),k2(t))+Cm+1] (2.8)

k’(t)=(1-m)j(k1(t),k2(t))-(g+d+pc)k(t)-(Cm+1)                                 (2.9)

Продифференцируем (2.8) по t. Получим:

-rt

l¢(t)=2 -rl(t)                          (2.10)

Учитывая, что z’(k1(t),k2(t)) =j’’k1k1( k1(t),k2(t))k’1(t)k1(t) +j’’k2k2( k1(t),k2(t))k’2(t)k2(t), получаем, что формула (2.10) примет вид

l¢(t) =e -rt(j’’k1k1( k1(t),k2(t))k’1(t)k1(t) +j’’k2k2( k1(t),k2(t))k’2(t)k2(t))(1- a+am(b1+b2))(Cm+1) / [(1 -m)z(k1(t),k2(t)) + Cm +1] 2 - rl(t)                                                                                                       (2.11)

Подставляем в (2.11) соотношения (2.6) и (2.8), (2.7) и (2.8) соответственно, получим, что темп изменения капиталовооруженности вычисляется по формулам:

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости