рефераты рефераты
Главная страница > Курсовая работа: Термодинамическое равновесие гетерогенных плазменных систем с существенной ионизацией компонентов  
Курсовая работа: Термодинамическое равновесие гетерогенных плазменных систем с существенной ионизацией компонентов
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Термодинамическое равновесие гетерогенных плазменных систем с существенной ионизацией компонентов

Из уравнения (2.1.1), которое определяет избыточный заряд в окрестности рассматриваемой КЧ и условия, вытекающего из закона сохранения заряда для среды в целом,

      

znp-ne=0 ,                                                       (2.1.5)

находим связь между распределением усредненного электростатического потенциала  и избыточного заряда . Окончательно приходим к дифференциальному уравнению 2-го порядка для избыточного заряда   в окрестности заданной КЧ:

.                                                  (2.1.6)

Посредством D2 (квадрат дебаевского радиуса для плазмозоля идентичных частиц) обозначена константа

                 (2.1.7)

Граничные условия для дифференциального уравнения (2.1.6) можно записать из следующих физических соображений:

1) в    плазмозоле    идентичных   эмитирующих частиц  усредненная плотность   объемного заряда  у поверхности   КЧ должна определяться  балансом потоков  электронов   эмиссии и прилипания (потока  газовых электронов, поглощенных  поверхностью КЧ);

         2) на бесконечности  (при  r)плотность избыточного  заряда  должна  обращаться в нуль. Таким  образом, приходим к граничным   условиям Дирихле  (задаются значения самой функции – плотности избыточного заряда  (r) на    поверхности    КЧ    и вдали от нее):

                                        θ(r)=θ;       θ()=0.                                (2.1.8)

Отбросив растущее  на бесконечности частное  решение (2.1.6), представим  выражение  для избыточного заряда  θ(r) в виде

                                          (2.1.9)

 Подставляя    его в уравнение электронейтральности   плазмоля (2.1.3) и производя интегрирование, получаем 

.                                           (2.1.10)

Таким образом, имеем трансцендентное уравнение для зарядового числа КЧ в плазмозоле. Поверхностная плотность избыточного заряда  параметрически зависит от электростатического заряда z и определяется как

                               (2.1.11)

где Q – отношение статистических весов частицы  p в зарядовых состояниях z+1 и z; Фz – работа выхода электрона с поверхности заряженной частицы радиуса rp.

Вследствие наличия собственных размеров частицы КДФ не могут приблизиться на расстояния r<2rp и поэтому объемный заряд на поверхности (при r=rp+0) КЧ равен плотности электронной компоненты.

Подставляя (2.1.11) в (2.1.10), получаем уравнение для среднего зарядового числа z КЧ в плазмозоле. Решив это уравнение относительно z и подставив найденное значение корня в условие электронейтральности среды (2.5), получим среднее значение концентрации электронов в газовой фазе:

ne=znp.                                                           (2.1.12)

Таким образом, уравнения (2.1.10) – (2.1.12) полностью решают вопрос об ионизационном равновесии в плазмозоле идентичных сферических частиц в рамках дебаевского рассмотрения.

2.2. Зависимость электронной концентрации от определяющих параметров плазмы.

Гетерогенная плазма, состоящая из двух подсистем: “частичной” – заряженных частиц КДФ и газовой – нейтрального буферного газа с эмитированными КДФ электронами, характеризуется параметрами, на     основе которых можно однозначно в рамках той или иной модели рассчитать ее равновесный состав. Кроме термодинамических параметров (T, P, V), характеризующих плазму в целом, каждая из подсистем определяется своими параметрами. Для ансамбля макрочастиц КДФ – это их размер или функция распределения по размерам в полидисперсной системе, работа выхода W вещества частиц. Свойства атомарных частиц в газовой фазе определяются потенциалами ионизации Ij парциальными давлениями компонент Pj, т.е. счетными концентрациями атомарных частиц каждого сорта nAj.

Основная цель описания термической ионизации в любой из моделей – построение зависимостей электрофизических параметров системы (плазмы с КДФ) от ее определяющих параметров. При математической формулировке задачи физическая модель обычно сводится к решению соответствующей системы уравнений сохранения и кинетики, записанной для термодинамического равновесия. После преобразований системы ионизационных уравнений приходят в конечном итоге к решению трансцендентного уравнения (см., например (1.2.14)), выражающего функциональную связь между определяющими – исходными параметрами задачи и искомыми (в данном случае электрофизическими). Так, уравнение

                          (2.2.1)

связывает усредненный заряд дисперсной частицы, а значит, и концентрацию электронов  ne=znp, со всеми остальными параметрами, характеризующими плазмозоль, а именно: температурой Т, размером частиц КДФ rp, их концентрацией np (входит в определение D), работой выхода с поверхности материала частиц W.

Таким образом, исследование зависимости концентрации электронов ne в равновесном плазмозоле идентичных частиц от определяющих параметров (Т, rp, np, W) можно проводить на основе анализа решения (2.2.1) в пространстве параметров задачи. Общие параметры Т, np  характеризуют систему в целом, а  rp, W определяют свойства отдельных макрочастиц. Если добавить сюда искомые параметры z и np, то каждая точка (Т, rp, np, W, z, ne) в пространстве параметров задачи будет определять некоторое состояние ионизации в плазмозоле. Причем реализующимся состояниям соответствуют точки, которые лежат на “поверхности”, задаваемой в пространстве параметров (2.2.1). Это уравнение множеству точек (Т, rp, np, W) ставит в соответствие множество решений задачи (z, ne).

Символически связь между  z и определяющими параметрами запишем так:

                                 F(z, T, W, np, rp)=0                                               (2.2.2)


3. Ячеечные модели плазмы, содержащей частицы.

Расчет равновесных состояний ионизации в системах с сильным кулоновским взаимодействием частиц конденсированной фазы (К-фазы) и газа, т.е. в случае, когда

                                      ,                                                            (3.1)

не может быть реализован в рамках дебаевского рассмотрения, так как в правой части уравнения Пуассона (2.1.2) не представляется возможным связать средние по объему концентрации заряженных частиц с их локальными концентрациями в системе координат выделенной КЧ. Это привело к появлению моделей, использующих решение нелинейного уравнения Пуассона в ограниченной области – ячейке [20]. В существующих моделях этого класса для плазмозолей концентрация электронов вблизи поверхности КЧ определена законом термоэмиссии, а область электронейтральности содержит одну – сферическая симметрия (модель Гибсона [20], ее модификация) или две – цилиндрическая симметрия – частицы КДФ одинакового размера, которые в последнем случае могут отличаться сортом.

Главная особенность этих моделей в сферически симметричном случае – предположение о  том, что весь объем плазмы можно заменить совокупностью сферических ячеек, каждая из которых содержит строго одну из идентичных сферических частиц. Для случая двух сортов частиц К-фазы объем плазмозоля заменяется совокупностью цилиндрических ячеек, содержащих две либо одинаковые, либо различающиеся сортом дисперсные частицы. Граничные условия для нелинейного уравнения Пуассона (2.1.2) выбираются на поверхности КЧ и на границе ячейки. Эти идеи распространяются на случай существенной нелинейности в правой части (2.1.2).

Статистический подход к моделированию электрофизических свойств НТП с КДФ, по характеру используемых представлений также может быть отнесен к классу ячеечных. Здесь ограниченная область экранирования выделенной КЧ является усредненным по ансамблю Гиббса электронейтральным объемом,  в котором КЧ находится в последовательные моменты времени. Рассмотрим специфические особенности ячеечного подхода согласно работе  Гибсона [20], в которой впервые изучена возможность распространения результатов, полученных для индивидуальных частиц К-фазы в ячейке на весь объем, занятый гетерогенной плазмой.

3.1. Ионизация системы газ – частицы в модели Гибсона.

В состоянии термодинамического равновесия распределение потенциала  и объемного заряда  тесно связаны между собой и подчинены уравнению Пуассона (2.1.2). Термоионизационное равновесие системы газ – частицы будет полностью определено, если одновременно найдены оба распределения: заряда ρ и потенциала φ. Таким образом, описать ионизацию в плазме газ – частицы – значит решить уравнение Пуассона при некоторых упрощающих предположениях, используемых в модели.

В [20] предполагается, что в плазмозоле идентичных частиц (в системе макрочастицы + излученные ими электроны + электрически и химически нейтральный буферный газ) в состоянии термодинамического равновесия наблюдается однородная ионизация дисперсных частиц (все частицы К-фазы имеют один и тот же заряд q=ze, z – зарядовое число, е – элементарный заряд). Плазма электрически нейтральна, а распределения объемного заряда электронов и потенциала в плазме связаны больцмановским коэффициентом, т.е. электроны в поле частиц распределены по Больцману:

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости