рефераты рефераты
Главная страница > Курсовая работа: Расчет и проектирование диода на основе кремния  
Курсовая работа: Расчет и проектирование диода на основе кремния
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Расчет и проектирование диода на основе кремния


Рис. 2.4 - Осциллограммы тока и напряжения при включении 6-кВ диода.

Т = 293 K. Пунктиром показан результат расчета V(t)

На линейном участке скорость спада эдс (∆V/∆t) обратно пропорциональна времени жизни τ инжектированных в базу ННЗ [19]:

                                    (2.2)

где кТ — тепловая энергия. При комнатной температуре рассчитанная таким способом величина τ составляет 0,6 мкс для 6-кВ диода и 1,55 мкс для 10-кВ и 20-кВ диодов. Принимая подвижность дырок в базе μр = 117см2/В ∙ c, подвижность электронов μп= 880 см2/В ∙ c, получим, что амбиполярный коэффициент диффузии Da = 2(kT/q)[ μP/(μп + μр)] = 5,3см2/с. Амбиполярная диффузионная длина ННЗ в базе, La = (Daτ)1/2, составляет 17,9мкм для 6-кВ диода и 28,7 мкм для 10-кВ и 20-кВ диодов. Такие диффузионные длины действительно могут обеспечивать достаточно глубокую модуляцию базы в случае 6-кВ и 10-кВ диодов (отношение толщины базы к диффузионной длине ННЗ W/La = 2,8 и 5,2 соответственно). Однако для глубокой модуляции 200-мкм базы 20-кВ диода этого явно недостаточно (W/La = 7.0). Следует однако заметить, что с ростом температуры время жизни ННЗ во всех диодах возрастает в несколько раз, что приводит к уменьшению падения напряжения, несмотря на падение подвижности носителей тока.

 

2.4 Особенности переходных характеристик диодов с р-базой

Доказано что в отличие от диодов с n-базой, которые демонстрируют довольно „мягкое" восстановление блокирующей способности, диоды с р-базой могут восстанавливаться довольно „жестко". При одних и тех же величинах прямого тока накачки и обратного напряжения максимальный обратный ток в диодах с р-базой существенно больше, и этот ток обрывается очень резко за время меньше одной наносекунды.

Расчетное время обрыва тока в диодах с р-базой оказалось равным 0,5 ± 0,05 нс, тогда как в диодах с n-базой минимальное время обрыва составляло 3 нс. Показано, что главным фактором, определяющим разный характер восстановления, является большая величина отношения подвижностей электронов и дырок в 4H-SiC, b = μn/μp.

Известно, что скорость „вытягивания" плазмы обратным током значительно выше из прианодной области, чем из прикатодной (в b2 раз до и в b раз после восстановления эмиттерных переходов [9]). В карбиде кремния = 7,5) этот процесс проявляется даже более ярко, чем в кремнии (b = 3), и доминирует во всех типах диодов независимо от асимметрии эффективности эмиттеров и вызванной ею начальной неоднородности распределения плазмы в высокоомной базе. В диоде с р-базой область, свободная от плазмы, возникает на аноде и, расширяясь со временем, достигает катода раньше, чем успевает восстановиться переход катодного эмиттера. В результате к моменту начала восстановления ОПЗ неравновесные носители практически полностью выносятся из базы обратным током. В этом случае граница восстанавливающейся ОПЗ будет перемещаться в отсутствие ННЗ, т.е. с насыщенной скоростью.


2.6 Расчет ВАХ при высоких плотностях прямого тока: влияние электронно-дырочного рассеяния

На рис. 2.5 показаны ВАХ 6-кВ диода, измеренные при температурах 293−553 K до плотностей тока j = 104 А/см2. Как видно, при достаточно больших плотностях тока имеет место „инверсия" температурной зависимости ВАХ. Точка инверсии приходится на область плотностей тока 2000−3000 А/см2, что более чем на порядок превышает плотность тока инверсии для аналогичных кремниевых структур. Для объяснения этого результата необходим анализ вклада различных нелинейных эффектов, определяющих вид ВАХ в области больших плотностей тока. К ним относятся эффекты, связанные с высоким уровнем легирования эмиттеров: сужение ширины запрещенной зоны, уменьшение подвижности основных носителей заряда, бимолекулярная и оже-рекомбинация. Кроме того, необходим учет взаимного рассеяния подвижных носителей друг на друге — электронно-дырочного рассеяния (ЭДР). Отметим, что эффекты, обусловленные ЭДР, оказываются чрезвычайно существенными в таких хорошо исследованных материалах, как Ge , Si и GaAs , так как сильно уменьшают подвижность носителей заряда в биполярных приборах при больших плотностях тока.

Для определения параметров ЭДР в 4H-SiC нами был предложен метод, основанный на анализе ВАХ диодных структур в области больших плотностей тока [2]. Составляющая падения напряжения на базе Veh, обусловленная ЭДР, обычно записывается в виде

                                             (2.3)

где μnp = Gp0/p — подвижность, обусловленная ЭДР. Анализ экспериментальных ВАХ диодов показал, что при Т = 293 K константа Gpo, определяющая подвижность μnp равна 5.8∙ 1019В−1см−1с−1, а величина qGp0, определяющая вклад ЭДР в ВАХ, — 9.3 Ом−1 см−1. Отметим, что найденные значения параметров ЭДР в SiC оказываются примерно в 2 раза меньшими, чем в Si, в 4 раза меньшими, чем в Ge, и в 60 раз меньшими, чем в GaAs. Это означает, что влияние ЭДР в SiC оказывается в соответствующее число раз более эффективным, чем в Si, Ge и GaAs.

Рис. 2.5 - Прямые ВАХ 6-кВ диодов. Точки — эксперимент, сплошные линии — расчет с учетом ЭДР.

2.7   Методы производства диодов

Кремниевые диоды обычно изготовляются из кремния n-типа со сравнительно большим удельным сопротивлением. К пластинке кремния приваривают проволочку из вольфрама, покрытого алюминием. Алюминий является для кремния акцептором. Полученная область кремния р-типа работает в качестве эмиттера.

Диоды изготовляются главным образом методами сплавления (вплавления) или диффузии (рис. 2.6). В пластинку кремния n-типа вплавляют при температуре около 500 °С каплю алюминия, которая, сплавляясь с кремнием, образует слой кремния р-типа. Область с электропроводностью р-типа имеет более высокую концентрацию примеси, нежели основная пластинка сравнительно высокоомного кремния, и поэтому является эмиттером. К основной пластинке кремния и к алюминию припаивают выводные проволочки, обычно из никеля. Если за исходный материал взят высокоомный кремния р-типа, то в него вплавляют сурьму и тогда получается эмиттерная область n-типа.

Следует отметить, что сплавным методом получают так называемые резкие, или ступенчатые, n-р-nереходы, в которых толщина области изменения концентрации примесей значительно меньше толщины области объемных зарядов в переходе.

Рисунок 2.6. - Принцип устройства плоскостных кремниевых диодов, изготовленных сплавным (а) и диффузионным (б) методом

Диффузионный метод изготовления n-р-nерехода основан на том, что атомы примеси диффундируют в основной полупроводник. Примесное вещество при этом обычно находится в газообразном состоянии. Для того чтобы диффузия была интенсивной, основной полупроводник нагревают до более высокой температуры, чем при методе сплавления. Например, пластинку кремния n-типа нагревают до 900 °С и помещают в пары алюминия. Тогда на поверхности пластинки образуется слой кремния р-типа. Изменяя длительность диффузии, можно довольно точно получать слой нужной толщины. После охлаждения его удаляют путем травления со всех частей пластинки, кроме одной грани. Диффузионный слой играет роль эмиттера. От него и от основной пластинки делают выводы. При диффузионном методе атомы примеси проникают на относительно большую глубину в основной полупроводник, и поэтому n-р-nереход получается плавным, т. е. в нем толщина области изменения концентрации примеси сравнима с толщиной ООЗ.


ЗАКЛЮЧЕНИЕ

Расширилась область применения силовых электронных устройств в сфере бытовой электроники (регуляторы напряжения и др.).

Благодаря интенсивному развитию электроники, начиналось создание нового поколения изделий' силовой электроники. Базой для него явились разработка и освоение промышленностью новых типов силовых полупроводниковых приборов: запираемых тиристоров, биполярных транзисторов, МОN-транзисторов и др. Одновременно существенно повысились быстродействие полупроводниковых приборов, значения предельных параметров диодов и тиристоров, развились интегральные и гибридные технологии изготовления полупроводниковых приборов различных типов, начала широко внедряться микропроцессорная техника для управления и контроля преобразовательными устройствами.

Следует отметить, что использование полностью управляемых быстродействующих полупроводниковых приборов в традиционных схемах существенно расширяет их возможности в обеспечении новых режимов работы и, следовательно, новых функциональных свойств изделий силовой электронной техники.


ВЫВОДЫ

В данной курсовой работе:

- рассмотрена классификация полупроводниковых диодов;

- рассмотрен силовой полупроводниковый выпрямительный диод на основе кремния;

- рассчитаны параметры диода

- изучены методы производства мощных низкочастотных диодов


СПИСОК ЛИТЕРАТУРЫ

1.  Управляемые полупроводниковые вентили: Пер. с англ./Ф. Джентри, Ф. Гутцвиллер, Н. Голоньяк, Э. фон Застров. М.: Мир, 1967. – 356 с.

Страницы: 1, 2, 3, 4, 5, 6

рефераты
Новости