рефераты рефераты
Главная страница > Курсовая работа: Расчет и проектирование диода на основе кремния  
Курсовая работа: Расчет и проектирование диода на основе кремния
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Расчет и проектирование диода на основе кремния

Несмотря на то, что при инжекции примыкающие к p-n – переходу области не заряжаются, диффузионную емкость можно связать с зарядом инжектированных носителей, так как инжектированные неосновные носители и нейтрализующие их основные носители не исчезают. Для сравнения вспомнить, что и обычный конденсатор в целом электрически нейтрален. Но в обычном конденсаторе положительные и отрицательные заряда пространственно разделены (то же самое можно сказать и о p-n – переходе при рассмотрении его барьерной емкости), в то время как при инжекции через p-n – переход и положительный, и отрицательный заряда оказываются в одной и ой же области и пространственно не разделяются, в результате чего не возможно обнаружить область, где проходят токи смещения.

Следовательно, диффузионную емкость можно связать с изменением заряда инжектированных неосновных носителей, но нельзя связать с происхождением тока смещения. В этом существенное физическое отличие диффузионной емкости от барьерной емкости p-n – перехода и от емкости обычного конденсата.

Диффузионную емкость можно представить следующим образом:

                         (1.5)

Постоянная времени. Если продолжить аналогию полупроводникового диода с конденсатором, то можно выяснит физический смысл постоянной времени Cдиф. Для конденсатора постоянная времени показывает, за какое время его заряд уменьшается в e раз, т.е. постоянная времени характеризует время исчезновения заряда конденсатора.

Постоянная времени диода с толстой базой при низкой частоте тоже характеризует время исчезновения заряда. Действительно, - время жизни неосновных носителей – как раз и показывает, в течение какого времени концентрация неосновных носителей измениться в е раз из-за рекомбинации.

Для диода с тонкой базой при низкой частоте постоянная времени равна                                                  (1.6)


2.   РАСЧЕТ и исследование мощных низкочастотных диодов на основе кремния

2.1 Расчет параметров диода

Проведем расчет и исследования статических и динамических характеристик 4H-SiC p+-п0-n+ диодов, рассчитанных на обратное напряжение 6, 10 и 20 кВ и обозначаемых далее как 6-кВ, 10-кВ и 20-кВ диоды. Концентрация примесей в сильно легированных эмиттерных областях составляет ~ 1019 см−3, уровень легирования и толщина базы n-типа определяются максимальным блокируемым напряжением (см. табл. 1).

Таблица 1 - Параметры структуры 6-кВ, 10-кВ и 20-кВ 4H-SiC р+-n0-п+ диодов

Концентрация доноров в базе, см−3 Толщина базы, мкм
6-кВ 1·1015 50
10-кВ 3·1014 150
20-кВ 3·1014 200

2.2    Расчет вольтамперных характеристик при малых плотностях тока

В 4H-SiC диодах при малых плотностях тока основную роль играют генерация и рекомбинация носителей в области пространственного заряда (ОПЗ) р-n-перехода и их диффузионный перенос через базу. В диодах практически отсутствуют "избыточные" токи, связанные с различного рода неоднородностями структуры и обусловленные, например, механизмами полевого и термополевого туннелирования. На рис. 2.1 в качестве примера показаны прямые вольтамперные характеристики (ВАХ) 6-кВ диода, измеренные при температурах 297 и 537 K в диапазоне плотностей прямого тока jпр= 10−7−1 А/см2. В указанном интервале плотностей тока ВАХ хорошо аппроксимируются суммой рекомбинационного (jрек) и диффузионного (jдиф) токов с учетом омического падения напряжения на базе диода jпрrб, где rб - сопротивление базы):

jпр = jрек + jдиф = jобр exp(qVpn/2kT) + jкб exp(qVpn/kT)             (2.1)

V = Vpn + jпрrб.

Обратный ток в исследованных 4H-SiC диодах при комнатной температуре настолько мал, что находится за пределами чувствительности измерительной аппаратуры.

Рисунок 2.1 - Прямые ВАХ 6-кВ диода при низких плотностях тока. Т = 297K: jобр = 2.3 ∙ 10−24 А/см2, jкб = 1.5 ∙ 10−45 А/см2, rб = 7.4∙10−2 Ом∙см2, T = 537K: jобр = 1 · 10-11 А/см2, jэб = 3∙ 10−21 А/см2, rб = 1.7 · 10-1 Ом ∙ см2.

Заметный обратный ток появляется лишь при температурах свыше 600 K. На рис. 2.2 показана обратная

ВАХ 6-кВ диода, измеренная при температуре 685 K. Как видно из этого рисунка, (Vбэ + V)1/2 (Vбэ — контактная разность потенциалов р—n-перехода). Таким образом, обратный ток обусловлен термической генерацией носителей в ОПЗ р—n-перехода.


Рисунок 2.2 - Обратная ВАХ 6-кВ диода при Т = 685 K.

 

2.3 Модуляция базы при высоких уровнях инжекции

На рис. 2.3 показаны импульсные квазистатические ВАХ 6-кВ, 10-кВ и 20-кВ диодов, измеренные при средних и высоких плотностях прямого тока. Как нетрудно убедиться, в 6-кВ и 10-кВ диодах реализуется достаточно глубокая модуляция базы инжектированными носителями. Так, например, при плотности прямого тока 180 А/см2 дифференциальное сопротивление 10-кВ диода rб = dV/djпр = 1.6 ∙ 10−2 Ом ∙ см2, в то время как омическое сопротивление нeмодулированной базы rб = W/qμп= 0.39 Ом ∙ см2 (μп = 800см2/Вс, n0 = 3 ∙ 1014см−3), т.е. в 24 раза больше измеренного дифференциального сопротивления.

Рис. 2.3 - Импульсные квазистатические прямые ВАХ 6-кВ, 10-кВ и 20-кВ диодов. Т = 293 K.


Для 6-кВ диода омическое сопротивление немодулированной базы rб = 6.5 ∙ 10−2Ом ∙ см2 в 16 раз больше, чем rб = 4.1 ∙ 10−3 Ом ∙ cм2. Такая ситуация свидетельствует о достаточно больших величинах коэффициента инжекции эмиттера и времени жизни ННЗ в базе диодов.

С целью определения времени жизни ННЗ изучались переходные процессы в диодах: установление прямого падения напряжения при пропускании ступеньки прямого тока, спад послеинжекционной эдс после обрыва тока, восстановление блокирующей способности диодов после их переключения из проводящего состояния в блокирующее [16].

 

2.4 Время жизни ННЗ: включение диодов и спад послеинжекционной эдс

На рис. 2.4 показана осциллограмма напряжения на 6-кВ диоде при пропускании прямого тока, быстро нарастающего от нуля до 5 A. Реакция диода на ступеньку тока имеет „индуктивный" характер, что свидетельствует о накоплении в базе высокой концентрации ННЗ. На зависимости V(t) вначале наблюдается всплеск напряжения, амплитуда которого определяется сопротивлением немодулированной базы, а затем, по мере накопления ННЗ в базе напряжение падает до стационарного значения, определяемого сопротивлением модулированной базы. Время установления стационарного состояния (по порядку величины оно сравнимо с временем жизни ННЗ [12]) составляет около 0,6 мкс.

Страницы: 1, 2, 3, 4, 5, 6

рефераты
Новости