рефераты рефераты
Главная страница > Курсовая работа: Синтез следящей системы с обратной связью по току и по скорости  
Курсовая работа: Синтез следящей системы с обратной связью по току и по скорости
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Синтез следящей системы с обратной связью по току и по скорости

.

Поэтому

и, следовательно, в рассматриваемых диапазонах справедливо равенство

.

Поэтому ОЛЧХ скорректированной системы приближенно можно представить в виде ломаной ABCDEF, как это показано на рис.4. Здесь ОЛЧХ синтезированной САР состоит из тех участков, определяемых охваченной частью  (участки AB иDEF), и прямой ЛАЧХ, определяемой параллельным корректирующим устройством  (участок BCD), которые оказываются большими по своей ординате.


Рис.4.


3.  Построение обратной логарифмической частотной характеристики неизменяемой части системы

Обратная передаточная функция неизменной части системы при коэффициенте разомкнутой системы к=1 и П(р)=1 имеет вид:

.

Определим действующее значение сопротивления силовой цепи ЭМУ-Д, которое равно сумме действующего сопротивления ЭМУ и сопротивления якоря двигателя:

, где

;

.

Находим коэффициент противо-ЭДС двигателя:

.

Находим постоянную времени разгона двигателя:

,

J – суммарный момент инерции якоря двигателя и объекта, приведенный к валу двигателя.


.

.

Тогда

.

.

Сопрягающие частоты:

;

.

Масштаб:

1 дек = 50 мм;

20 дБ = 25 мм.

Построение ОЛАЧХ неизменяемой части системы показано на рис5


4.  Построение желаемой обратной логарифмической частотной характеристики

В основу построения ОЖЛАЧХ следящих систем должны быть положены следующие основные показатели качества: точность слежения, быстродействие, запасы устойчивости по фазе и амплитуде, фильтрующие свойства. Достижению каждого из них соответствует реализация определенных участков ОЖЛАЧХ.

Закон изменения задающего воздействия:

, где

 - постоянная составляющая скорости изменения задающего воздействия.

* - амплитудное значение гармонической составляющей задающего воздействия.

* - рабочая частота гармонической составляющей.

Продифференцировав три раза закон изменения задающего воздействия, получим:

Отсюда определяем:

Амплитуда гармонического сигнала:


;

Рабочая частота:

;

Постоянная составляющая скорости изменения задающего воздействия:

.

Для того, чтобы задающее воздействие воспроизводилось с требуемой точностью, ОЖЛАЧХ должна проходить не выше контрольной рабочей точки с координатами:

.

Гармоническая составляющая ошибки:

;

.


Тип ОЖЛАЧХ выбираем в соответствии со следующими правилами: так как величина отношения ошибки  к амплитуде управляющего воздействия  удовлетворяет неравенству

.

Выбираем 3 тип ОЖЛАЧХ.

Частота привязки определяется из выражения:

.

Передаточная функция скорректированной системы для ОЛАЧХ 3 типа:

.

Построение ОЖЛАЧХ показано на рис.5а (на доп. чертеже). По построению видно, что ОЖЛАЧХ проходит через контрольную точку. Сопрягающие частоты ОЖЛАЧХ и соответствующие им постоянные времени:

;  ; ; ; .


5.  Синтез корректирующих устройств

Применение корректирующих устройств преследует две цели:

1.  обеспечить требуемую точность системы;

2.  получить приемлемый характер переходных процессов, т.е. качество регулирования.

Применение этих устройств направлено на введение в алгоритм управления производных и интегралов от ошибки и от внешних воздействий. При этом дифференцирование и интегрирование может осуществиться либо во всем частотном диапазоне работы системы, либо на некотором его интервале. Последовательные корректирующие устройства размещают в цепи основного воздействия, а параллельные – в цепях обратных связей.

Наиболее универсальным и эффективным методом повышения точности является увеличение общего коэффициента усиления. Это можно сделать за счет введения в систему дополнительных усилителей.

Однако при увеличении общего коэффициента усиления система приближается к границе устойчивости. При некотором предельном значении коэффициента усиления система может стать неустойчивой. Таким образом, корректирующие устройства должны не только увеличить коэффициент усиления системы, но и одновременно повысить запас ее устойчивости.

5.1 Синтез последовательного корректирующего устройства

Определяем получившийся коэффициент усиления разомкнутой системы как разность между ординатой ОЛАЧХ неизменяемой части и ординатой ОЖЛАЧХ при частоте .

;

.


Введем последовательное корректирующее устройство дифференциально-интегрирующего типа.

Определяем получившуюся суммарную ошибку:

;

После окончания переходного процесса постоянная составляющая скорости изменения задающего процесса будет иметь постоянное значение, а обусловленная ею составляющая ошибки определяется только статикой системы. В статике передаточная функция системы равна ее коэффициенту усиления. Поэтому

;

Составляющая моментной ошибки:

;

Ток короткого замыкания в якорной цепи двигателя при номинальном напряжении:

;

Номинальная скорость двигателя:

;

;

.

Сравним:

;

.

Вводим последовательное корректирующее устройство с передаточной функцией:

;

При этом

.

Минимальное значение коэффициента усиления, которое обеспечивает удовлетворение условия .

.

Принимаем

 и ;


Тогда

;

.

Корректируем ОЛАЧХ неизменяемой части системы при помощи последовательного корректирующего устройства. Затем сдвигаем полученную ОЛАЧХ вниз до пересечения ее с ОЖЛАЧХ при частоте . Находим частоту  и соответствующую ей постоянную времени, при которой пересекаются ОЛАЧХ неизменяемой части и ОЖЛАЧХ следящей системы. Рис 5б на дополнительном чертеже

Страницы: 1, 2, 3, 4, 5

рефераты
Новости