рефераты рефераты
Главная страница > Реферат: Оцінювання параметрів розподілів  
Реферат: Оцінювання параметрів розподілів
Главная страница
Новости библиотеки
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Реферат: Оцінювання параметрів розподілів

.                              (5)

Метод найбільшої правдоподібності полягає в тому, що за оцінку параметра береться таке його значення, при якому функція правдоподібності досягає свого максимуму.

Параметр  знаходять, розв’язуючи відносно нього рівняння


.                                              (6)

Часто для зручності функцію правдоподібності заміняють її логарифмом і замість (6) розв’язують рівняння вигляду

 ,   .                                           (7)

Якщо щільність ймовірності  або ймовірність можливого значення  залежать від  параметрів, то найбільш правдоподібну оцінку системи параметрів  одержують під час розв’язання системи рівнянь

                                     (8)

або

.                                  (9)

Найбільш правдоподібні оцінки при досить загальних умовах мають такі важливі властивості:

– вони є обґрунтованими,

– асимптотично нормально розподіленими, однак не завжди незміщеними,

– серед усіх асимптотично нормально розподілених оцінок вони мають найбільшу ефективність.

Має місце також наступне положення: якщо взагалі є ефективна оцінка, її можна отримати методом найбільшої правдоподібності.

3. Інтервальне оцінювання параметрів

Інтервальною називають оцінку, що визначається двома числами – кінцями інтервалу. Інтервальні оцінки дозволяють визначити точність і надійність точкових оцінок.

Надійністю (довірчою ймовірністю) оцінки невідомого параметра  за допомогою знайденої за даними вибірки статистичної характеристики  називають ймовірність , з якою виконується нерівність :

чи, що те ж саме

.

Звичайно використовують рівень надійності, що має значення: 0,95; 0,99 і 0,999.

Довірчим називають інтервал ( ), який покриває невідомий параметр із заданою надійністю .

1 Довірчі інтервали для оцінки математичного сподівання нормаль­ного розподілу при відомому . Розглянемо задачу інтервальної оцінки невідомого математичного сподівання  кількісної ознаки  по вибірковій
середній  нормально розподіленої сукупності з відомим середньо квадратич­ним відхиленням . Знайдемо довірчий інтервал, що покриває параметр  з надійністю .

Вибіркова середня  змінюється від вибірки до вибірки. Тому її можна розглядати, як випадкову величину , а вибіркові значення ознаки , , ... ,  (ці числа також змінюються від вибірки до вибірки) – як однаково розподілені незалежні випадкові величини , , ... , . Тобто, математичне сподівання кожної з цих величин дорівнює  і середнє квадратичне відхилення – .

Можна показати, що у разі нормального розподілення випадкової величина  вибіркова середня , знайдена за незалежними спостереженнями, також розподілена нормально з параметрами:

, .                                        (12)

Поставимо вимогу, щоб було виконано співвідношення

,                                                (13)

де  – задана надійність.

Застосуємо до нормально розподіленої випадкової величини  відому з теорії ймовірностей формулу про ймовірність відхилення нормально розподіленої випадкової величини  зі середньоквадратичним відхиленням  від його математичного сподівання  не більше ніж на

 ,                                   (14)

де  – табульована функція Лапласа (3).

При цьому у формулі (14) відповідно до (12) необхідно замінити  на ,  на , залишивши математичне чекання  без зміни.

Тоді одержимо:

,                            (15)

де введено таке позначення

.                                                (16)

Підставивши у формулу (15) вираз величини  через  з (16)

,                                                 (17)

перетворивши її до вигляду:

.

З огляду на те, що ймовірність  задана і дорівнює  (13), а також, що випадкова величина  є формальним поданням вибіркової середньої , остаточно одержимо:

.                       (18)

Цю оцінку називають класичною. Відповідно до неї з надійністю  можна стверджувати, що довірчий інтервал  покриває невідомий параметр . При цьому величина  визначається з рівності (18), а точність оцінки  – з (17).

З формули (17) видно, що із зростанням обсягу вибірки  величина  зменшується, тобто точність оцінки підвищується. З співвідношення (18), де , із врахуванням відомого зростаючого характеру функції Лапласа  (3), випливає, що підвищення надійності класичної оцінки (18) призводить до погіршення її точності.

2 Довірчі інтервали для оцінки математичного сподівання нормального розподілу при невідомому . Ускладнимо постановку задачі, розглянутої в попередньому пункті, вважаючи, що тепер середнє квадратичне відхилення  нормально розподіленої кількісної ознаки  невідомо.

У цьому випадку за даними вибірки побудуємо випадкову величину  (її значення будемо традиційно позначати відповідною малою буквою ), що є функціональним перетворенням випадкової величини , введеної в попередньому пункті:

Страницы: 1, 2, 3, 4

рефераты
Новости