рефераты рефераты
Главная страница > Учебное пособие: Теория искусственного интеллекта  
Учебное пособие: Теория искусственного интеллекта
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Теория искусственного интеллекта

MIN(0,9;0,8)=0,8.

Следовательно, степень принадлежности антецедента такого правила равна 0,8. Операция, описанная выше, отрабатывается для каждого правила в базе нечетких правил.

Следующим шагом является собственно вывод или заключение. Подобным же образом посредством операторов MIN/MAX вычисляется значение консеквента. Исходными данными служат вычисленные на предыдущем шаге значения степеней принадлежности антецедентов правил.

После выполнения всех шагов нечеткого вывода мы находим нечеткое значение управляющей переменной. Чтобы исполнительное устройство смогло отработать полученную команду, необходим этап управления, на котором мы избавляемся от нечеткости и который называется дефаззификацией.

Дефаззификация (устранение нечеткости)

На этом этапе осуществляется переход от нечетких значений величин к определенным физическим параметрам, которые могут служить командами исполнительному устройству.

Результат нечеткого вывода, конечно же, будет нечетким. В примере с краном команда для электромотора крана будет представлена термом СРЕДНЯЯ (мощность), но для исполнительного устройства это ровно ничего не значит.

Для устранения нечеткости окончательного результата существует несколько методов. Рассмотрим некоторые из них. Аббревиатура, стоящая после названия метода, происходит от сокращения его английского эквивалента.

Метод центра максимума (СоМ)

Так как результатом нечеткого логического вывода может быть несколько термов выходной переменной, то правило дефаззификации должно определить, какой из термов выбрать. Работа правила СоМ показана на рис. 4.

 Рис. 4.

Метод наибольшего значения (МоМ)

При использовании этого метода правило дефаззификации выбирает максимальное из полученных значений выходной переменной. Работа метода ясна из рис. 5.

 

Метод центроида (СоА)

В этом методе окончательное значение определяется как проекция центра тяжести фигуры, ограниченной функциями принадлежности выходной переменной с допустимыми значениями. Работу правила можно видеть на рис. 6.


Рис. 5.


Применение: MYCIN, Fuzzy CLIPS, AM, HEARSAY-11, PROSPECTOR. «Экспертные системы»

В современном обществе при решении задач управления сложными многопараметрическими и сильно связанными системами, объектами и производственными и технологическими процессами приходится сталкиваться с решением неформализуемых и трудноформализуемых задач. Такие задачи часто возникают в следующих областях: авиация, космос и оборона, нефтеперерабатывающая промышленность и транспортировка нефтепродуктов, энергетика, металлургия, машиностроительная промышленность, медицина, прогнозирование и мониторинг и другие.

В начале 60-х годов в рамках исследований по искусственному интеллекту (ИИ) сформировалось самостоятельное направление - экспертные системы (ЭС). В задачу этого направления входит исследование и разработка программ (устройств), использующих знания и процедуры вывода для решения задач, ранее решавшихся только человеком-экспертом. Области применения ЭС включают широкий проблемный спектр от медицинской диагностики и определения курса лечения до систем управления различного рода, планирования и контроля процесса производства.

Экспертная система — система, объединяющая возможности компьютера со знаниями и опытом эксперта в такой форме, что система способна предложить разумный совет или осуществить разумное решение. Дополнительно желаемой характеристикой такой системы является способность пояснять ход своих рассуждений в понятной для человека форме.

Данное определение ЭС одобрено комитетом группы специалистов по экспертным системам Британского компьютерного общества.

Под экспертной системой понимают программу, которая, используя знания специалистов (экспертов) о некоторой конкретной узко специализированной предметной области и в пределах этой области, способна принять решение на уровне эксперта-профессионала.

Можно отметить двойственность толкования названия ЭС, т.к. во-первых, в них используется знания экспертов, а во-вторых, ЭС сами могут выступать в качестве экспертов.

Огромный интерес к экспертным системам со стороны пользователя вызван следующими причинами:

1. Специалисты, не знающие программирования, с помощью экспертных систем могут самостоятельно разрабатывать интересующие их приложения, что позволяет резко расширить сферу использования вычислительной техники.

2. Экспертные системы при решении практических задач достигают результатов, не уступающих, а иногда и превосходящих возможности людей экспертов, не оснащенных ЭС.

3. Решаемые экспертными системами задачи являются неформализованными и используют эвристические, экспериментальные, субъективные знания экспертов в определенной предметной области.

4. В экспертных системах знания отделены от данных, и мощность ЭС обусловлена в первую очередь мощностью базы знаний и только во вторую очередь используемыми методами решения задач.

Обычно к экспертным системам относят системы, основанные на знаниях, т.е. системы, функциональные возможности которых являются в первую очередь следствием их наращиваемой базы знаний (БЗ) и только во вторую очередь определяется используемыми методами принятия решения.

Правильное функционирование ЭС, как систем основанных на знаниях, зависит от качества и количества знаний, хранимых в их БЗ. Поэтому приобретение знаний для ЭС является очень важным процессом.

Приобретение (извлечение) знаний — получение информации о проблемной области различными способами, в том числе от специалистов, и выражение её на языке представления знаний с целью построения БЗ. Необходимо умело «скопировать» образ мышления эксперта.

Знания для ЭС могут быть получены из различных источников: книг, отчетов, баз данных, эмпирических правил, персонального опыта эксперта и т. п. Возможны 3 способа получения знаний от эксперта: протокольный анализ, интервью и игровая имитация профессиональной деятельности

Классификация экспертных систем

По назначению: экспертные системы общего назначения; специализированные: а) проблемно-ориентированные для задач диагностики, проектирования, прогнозирования; б) предметно-ориентированные для решения специфических задач, например, контроль ситуации на АЭС.

По степени зависимости от внешней среды:

-статические экспертные системы, не зависящие от внешней среды;

- динамические, учитывающие динамику внешней среды и предназначенные для решения задач в реальном времени.

По типу использования:

- изолированные экспертные системы;

- экспертные системы на входе/выходе других систем;

- гибридные экспертные системы, интегрированные с базами данных и другими программными средствами.

По сложности решаемых задач:

- простые экспертные системы, имеющие до 1000 простых правил;

- средние системы, имеющие от 1000 до 10000 правил;

- сложные, имеющие более 10000 правил.

По стадии создания:

- исследовательский образец, разработанный за 1-2 месяца с минимальной базой знаний;

- демонстрационный образец, разработанный за 3-4 месяца на языках LISP, PROLOG и др.;

- промышленный образец, разработанный за 4-8 месяцев с полной базой знаний на языках типа CLIPS;

- коммерческий образец, разработанный за 1,5 – 2 года на современных языках с полной базой знаний.

Области применения ЭС

В настоящее время ЭС используются при решении задач следующих типов:

·  принятие решений в условиях неопределенности (неполноты) информации о внешнем мире,

·  интерпретация символов и сигналов (например, системы оптического распознавания),

·  прогнозирование (погоды, месторождений полезных ископаемых),

·  диагностика (заболеваний, состояния технических устройств),

·  конструирование (например, технических устройств), планирование (например, банковских операций),

·  обучение,

·  управление, контроль и др.

Функциональная структура экс пертной системы

Рис. 13.1.Структура ЭС


*Типичная экспертная система состоит из следующих основных компонентов: модуля принятия решения (интерпретатора), БД, БЗ, пользовательского интерфейса.

Ввод входных данных и информации о текущей задаче – через пользователя.

База данных предназначена для хранения исходных и промежуточных данных, необходимых для решения текущей задачи. Термин база данных совпадает по названию, но не по значению с термином, используемым в информационно-поисковых системах и системах управления БД, где он обозначает список однотипных единиц информации.

Пример содержимого базы данных ЭС обработки детали на станке.

База знаний (БЗ) — совокупность описывающих предметную область правил и фактов, позволяющих с помощью механизма вывода выводить суждения в рамках этой предметной области, которые в явном виде в базе не присутствуют.

Решатель, используя информацию из БД и знания из БЗ, формирует такую последовательность правил, которые, будучи примененными к данным из БД, приводят к решению задачи. Этот модуль используется и на этапе обучения системы и на этапе проведения экспертизы. В начале обучения база знаний системы пуста. Используя данные из БД, решатель пытается выработать какое-то суждение. Поскольку в БЗ отсутствуют какие-либо правила, требуемые для решения задачи, суждение будет неверным, на что системе будет указано человеком-экспертом, а так же будет введен правильный ответ. Используя полученную от человека информацию (правильное суждение), решатель дополнит БЗ соответствующими правилами. Затем модуль принятия решений попытается вывести новое суждение. Если ответ, полученный системой в результате ее работы, является верным, модуль принятия решений еще раз подтвердит правила, участвовавшие в принятии ответа. Такой процесс обучения продолжается до тех пор, пока ЭС не начнет выводить только правильные суждения. К моменту проведения экспертизы база знаний уже заполнена при помощи модуля принятия решений необходимыми для решения поставленной задачи правилами. Применяя проверенные правила к данным из БД, модуль принятия решения выведет требуемое суждение.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

рефераты
Новости