рефераты рефераты
Главная страница > Учебное пособие: Операционные системы "тонких" клиентов  
Учебное пособие: Операционные системы "тонких" клиентов
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Учебное пособие: Операционные системы "тонких" клиентов


 

Рисунок 10.5 Посылка сообщения через виртуальный канал

Виртуальный канал создается процессом-отправителем сообщения При этом на узле отправителя и на узле получателя создаются виртуальные процессы, каждый из которых представляет на локальном узле идентификатор процесса - удаленного корреспондента. Реальный процесс имеет реальный идентификатор (PID), виртуальный процесс - виртуальный идентификатор (VID). VID обеспечивает соединение, которое содержит следующую информацию:

локальный PID;

удаленный PID;

удаленный NID (идентификатор узла сети);

удаленный VID.

Процессы QNX имеют символьные имена, причем эти имена могут быть глобальными, доступными во всей сети. Приложение может по имени получить PID процесса - удаленного корреспондента. При этом система автоматически создает виртуальный канал и для приложения этот канал отождествляется с PID корреспондента.

Администратор сети обеспечивает создание виртуальных каналов, буферизацию данных в канале и контроль целостности виртуальных каналов.

10.7 Графическая система Photon

Пользовательский интерфейс QNX строится на базе графической системы Photon. Структура графической системы представляет для нас интерес прежде всего потому, что она следует общим архитектурным концепциям QNX. Это обстоятельство делает графическую систему нетребовательной к ресурсам, легко масштабируемой - от интерфейса встроенного или карманного мобильного устройства до полнофункционального WIMP-интерфейса. Это обеспечивает также то, что возможные сбои графической системы не оказывают влияния на работоспособность всей ОС и требуют только перезапуска отказавшего компонента.

В отличие от других графических систем, которые обеспечивают функции графического интерфейса в монолитной (Windows) или клиент/серверной (X Window) модели, Photon строится на базе компактного графического микроядра и распределения графической функциональности между взаимодействующими процессами. Архитектура графической системы показана на рисунке 10.6, и она очень похожа на архитектуру QNX в целом.

 

Рисунок 10.6 Архитектура графической системы Photon

Микроядро Photon, которое является процессом QNX, выполняет необходимый минимум графических функций. Микроядро Photon занимает всего 55 Кбайт памяти. Прочие части графической системы - также процессы, которые для выполнения базовых функций обращаются к микроядру Photon, используя средства взаимодействия, обеспечиваемые микроядром QNX. Менеджеры графической системы являются опционными, включение новых менеджеров расширяет функции системы. До некоторой степени ключевым компонентом, определяющим переход от интерфейса встроенной системы к WIMP-интерфейсу, является менеджер окон, который обеспечивает изменение размера, минимизацию, перемещение и т.д. для окон.

Работа системы Photon строится на концепции "трехмерного пространства событий", которая иллюстрируется на рисунке 10.7.

 

Рисунок 10.7. Движение через пространство событий

Событиями в системе являются как события, инициируемые пользователем (мышью, клавиатурой), так и события, инициируемые процессами. Пространство, через которое движутся события, представляется как набор параллельно размещенных прямоугольных областей. Метафорой, давшей название системе, является движение частицы света (фотона) через ряд стеклянных пластин. На одном конце этого ряда находится корневая область, создаваемая системой, на другом конце - та область, которая представляется пользователю. Процесс, который выполняет какие-либо функции, связанные с интерфейсом, помещает свою область в этот ряд. Каждая область имеет две маски для проходящих через нее событий: маску чувствительности и маску непрозрачности. Установка бита чувствительности для определенного события определяет передачу события для обработки процессу, связанному с областью. Установка для события бита непрозрачности определяет прекращение движения события через пространство. Графические драйверы являются процессами, которые помещают свои области на переднем (ближнем к пользователю) краю ряда. Это обеспечивает также возможность распределенной обработки в сети: приложение с графическим интерфейсом может работать в одном узле сети, а результат его работы отображаться на другом узле. Физический драйвер целевого узел просто помещает свою область на переднем краю пространства событий. Подобным образом обеспечивается и отображение результатов работы приложений QNX в других графических системах: вместо драйвера в пространство событий вставляется область переходника в систему Windows или X Window.


Глава 12. Операционные системы мейнфреймов

12.1 История и архитектура мейнфреймов

Обычно на русский язык термин "мейнфрейм" переводится как "большая ЭВМ универсального назначения". Однако нам представляется, что в настоящее время такое определение уже не является точным. Современные мейнфреймы не универсальны. Они специализированы как компьютеры для обработки больших и сверхбольших объемов данных или как суперсерверы. Название одного из поколений мейнфреймов IBM ESA (Enterprise System Architecture - архитектура систем масштаба предприятия) достаточно точно отражает такую специализацию

Мейнфреймы фирмы IBM [7] имеют почти 40-летнюю историю развития, причем, развитие это протекало эволюционно, во всяком случае, с точки зрения пользователей. При любых изменениях в аппаратной архитектуре каждое следующее поколение мейнфреймов обеспечивало выполнение программного обеспечения, разработанного для предшествующих поколений, почти в полном объеме.

За время существования мейнфреймов неоднократно высказывались и приобретали широкую популярность заявления об их устаревании и скорой кончине, однако, всегда "эти слухи оказывались несколько преувеличенными", и мейнфреймы продолжали существовать и развиваться. В настоящее время в технологиях обработки информации возрастает потребность в существенно централизованных решениях, и новое поколение мейнфреймов оказывается востребованным, как никогда раньше.

Семейство мейнфреймов IBM System/360, появившееся в начале 60-х годов, стало значительной вехой в истории вычислительной техники. Во-первых, это были первые ЭВМ, которые начали выпускаться серийно, а не по индивидуальным проектам, во-вторых, они стали первым семейством ЭВМ, то есть набором моделей с разной производительностью и разной стоимостью, но с переносимостью программного обеспечения с одной модели на другую. Семейство IBM System/360 строилось на базе CISC-процессоров с богатым набором команд и несколькими режимами адресации. Эти процессоры, однако, не поддерживали динамическую трансляцию адресов, поэтому программное обеспечение работало с реальной памятью, привязка адресов осуществлялась при загрузке. (Точнее - во время выполнения, в момент загрузки "базовых" регистров, но загруженная в реальную память программа уже не могла быть перемещена.) Размер адресной шины составлял 24 бит, что позволяло адресовать 16 Мбайт памяти - реальной и виртуальной. Чрезвычайно сильным свойством IBM System/360 явилась архитектура каналов ввода-вывода [8] (см. главу 6 части I). Достоинства мейнфреймов IBM System/360 определили ведущее положение этого семейства на рынке вычислительной техники в течение всех 60-х и начала 70-х годов, и первое время конкуренты IBM, вынуждены были делать собственные компьютеры программно совместимыми с IBM System/360.

Следующим поколением мейнфреймов стало семейство IBM System/370. Принципиальным отличием его от предыдущего поколения явилось введение динамической трансляции адресов. Применялась сегментно-страничная модель трансляции, во всех ОС этого поколения каждому процессу выделялся один сегмент адресного пространства (АП), то есть, процесс обладал собственной виртуальной памятью размером в 16 Мбайт. Однако в этом поколении проявилось некоторая "успокоенность" фирмы IBM. Фирма упустила из виду одно из конкурирующих направлений развития вычислительной техники, а именно - мини-ЭВМ, так называемые, Unix-машины, ведущим производителем которых в то время была фирма Digital Equipment. Нововведений семейства IBM System/370 оказалось недостаточно, чтобы сохранить почти монопольное положение на рынке, и именно тогда возникла первая "легенда о смерти мейнфреймов".

Отличие семейства IBM System/370/XA (eXtended Architecture - расширенная архитектура) от предыдущего поколения было достаточно революционным: адресная шина расширилась до 31 бита, что позволило адресовать виртуальную память до 2 Гбайт (при этом сохранилась совместимость и со старыми 24-разрядными моделями). Другим принципиально важным нововведением расширенной архитектуры явилось введение в подсистему ввода-вывода возможности динамического определения пути к устройствам ввода-вывода и поддержка SMP-архитектуры.

Следующим поколением стало семейство IBM ESA/370. В этом семействе появилась возможность адресовать до 16 2-Гбайтных виртуальных АП. Важнейшим из других возможностей, по-видимому, явилось свойство PR/SM (Partition Resources/System Management), обеспечивающее возможность разбиения (на микропрограммном уровне) ресурсов вычислительной системы на независимые логические разделы. Семейства 370/XA и ESA/370 определили новую специализацию мейнфреймов, однако еще не вывели фирму IBM в абсолютные лидеры.

Дальнейшее развитие мейнфреймов происходило во многом благодаря конкуренции IBM с японскими фирмами (Hitachi, Fujitsu), выпускающими собственные мейнфреймы, программно совместимые с IBM. Новое семейство - IBM ESA/390 интегрировало в себе большое количество нововведений, которые в итоге определили "второе рождение" мейнфреймов. Среди этих нововведений - увеличение регистрового массива, новые средства защиты памяти, новые средства работы с числами с плавающей точкой, оптоволоконные ESCON-каналы, встроенные криптографические процессоры и аппаратная поддержка сжатия данных и, конечно, sysplex - средство комплексирования вычислительных систем. В этом семействе произошел также переход мейнфреймов на CMOS-технологию, что привело к тому, что по размерам и по энергопотреблению они стали сравнимы даже с ПЭВМ.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27

рефераты
Новости