рефераты рефераты
Главная страница > Лабораторная работа: Символьные вычисления  
Лабораторная работа: Символьные вычисления
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Лабораторная работа: Символьные вычисления

Примеры.

>>syms x y a b

>> [N, D]=numden (x/y+y/x)

N=x^2+y^2

D=x*y

>>A=[a, 1/b]

>> [N, D]=numden(A)

N=[a, 1]]

D=[1, b]

Функция subs – выполняет подстановку значений символьных переменных

Синтаксис

subs(S)

subs (S, NEW)

subs (S, OLD, NEW)

subs (S, OLD, NEW, 0)

Ø  Функция subs(S) заменяет свободные символьные переменные их числовыми значениями, которые берутся либо из вызываемой функции, либо из рабочей области системы MATLAB.

Ø  Функция subs (S, OLD, NEW) заменяет свободные символьные переменные OLD новыми символьными переменными или числовыми значениями из списка NEW. Если OLD и NEW – массивы ячеек одинакового размера, то каждый элемент массива OLD заменяется соответствующим элементом массива NEW. Если символьное выражение S и список OLD – скаляры, а NEW – числовой массив или массив ячеек, то скаляры расширяются до размера массива. Если подстановка subs (S, OLD, NEW) не изменяет символьного выражения S, то выполняется подстановка subs (S, NEW, OLD). Чтобы предотвратить попытку обратной подстановки, следует использовать обращение subs (S, OLD, NEW, 0)

Примеры.

>>a=980

>>c1=3

>>syms t

>>y=dsolve (‘Dy=-a*y’);

>>subs(y)

ans=3*exp (-980*t)

Однокомпонентная подстановка

>>syms a b

>>subs (a+b, a, 4)

ans=4+b

Многокомпонентная подстановка:

>>subs (cos(a)+sin(b), [a, b], [sym(‘alpha’), pi/2)

ans=cos(alpha)+sin (pi/2)

Подстановка матрицы вместо скаляра:

>>subs (exp(a*t), ’a’, – magic(2))

ans=

[exp(-t), exp (-3*t)]

[exp (-4*t), exp (-2*t)

3.  Математический анализ

Функция limit – вычисляет предел функции одной переменной

Синтаксис

limit (F, x, a)

limit (F, a)

limit(F)

limit (F, x, a, ’right’)

limit (F, x, a, ’left’)

Описание

Ø  Функция limit (F, x, a) определяет предел функции F(x) при x->a.

Ø  Функция limit (F, a) автоматически определяет независимую переменную, например t, с помощью функции findsym(F) и затем вычисляется предел функции F(t) при t->a.

Ø  Функция limit(F) предполагает по умолчанию в качестве предельной точки a=0.

Ø  Функции limit (F, x, a, ’right’) и limit (F, x, a, ’left’) вычисляют соответственно правосторонний и левосторонний пределы.

Примеры.

>>syms x a t h

>>limit (sin(x)/x)

ans=1

>>limit((x‑2)/(x^2–4), 2)

ans=1/4

>>limit((1+2*t/x)^(3*x), x, inf)

ans=exp (6*t)

>>limit (1/x, x, 0,’right’)

ans=inf

>>limit (1/x, x, 0,’left’)

ans=-inf

>>limit((sin (x+h) – sin(x))/h, h, 0)

ans=cos(x)

v=[(1+a/x)^x, exp(-x)]

>>limit (v, x, inf, ’left’)

ans=[exp(a), 0]

Функция diff – выполняет дифференцирование функции одной переменной

Синтаксис

diff(S)

diff (S, ’v’)

diff (S, sym(‘v’))

diff (S, n)

diff (S, ’v’, n)

diff (S, n, ’v’)

Ø  Функция diff(S) автоматически определяет независимую переменную с помощью функции findsym(S) и затем выполняет соответствующее дифференцирование.

Ø  Функция diff (S, ’v’) и diff (S, sym(‘v’)) дифференцирует символьное выражение S по переменной, указанной в ‘v’.

Ø  Функции diff (S, n), diff (S, ’v’, n), diff (S, n, ’v’) дифференцируют n раз символьное выражение S по переменной, указанной в ‘v’.

Ø  Если S матрица, то операция дифференцирования применяется к каждому элементу матрицы.

Примеры

>>syms x t

>>diff (sin(x^2))

ans=2*cos (x^2)*x

>>diff (t^6,6)

ans=720

Функция int – выполняет интегрирование функции одной переменной

Синтаксис

R=int(S)

R=int (S, v)

R=int (S, a, b)

R=int (S, v, a, b)

Ø  Функция int(S) возвращает символьное значение неопределенного интеграла от символьного выражения или массива символьных выражений S по переменной, которая автоматически определяется функцией findsym. Если S – скаляр или матрица, то вычисляется интеграл по переменной ‘x’.

Ø  Функция int (S, v) возвращает неопределенный интеграл от S по переменной v.

Ø  Функция int (S, a, b) возвращает определенный интеграл от S с пределами интегрирования от a до b, причем пределы интегрирования могут быть как символьными, так и числовыми.

Ø  Функция int (S, v, a, b) возвращает определенный интеграл от S по переменной v с пределами интегрирования от a до b.

Примеры

>> x=sym('x');

>> int (x^2, x)

ans =

1/3*x^3

>> int (sin(x)^3, x)

ans =

-1/3*sin(x)^2*cos(x) – 2/3*cos(x)

>> int (log(2*x), x)

ans =

log (2*x)*x-x

>> int((x^2–2)/(x^3–1), x, 1,2)

ans =

– inf

>> int((x^2–2)/(x^3–1), x, 2,5)

ans =

-2/3*log(2)+2/3*log(31)+2/3*3^(1/2)*atan (11/3*3^(1/2)) – 2/3*log(7) – 2/3*3^(1/2)*atan (5/3*3^(1/2))

>> int([x^3 sin(x) exp(x)], x)

ans =

[1/4*x^4, – cos(x), exp(x)]

Функция taylor – служит для получения разложений аналитических функций в ряд Тейлора (и Маклорена)

Синтаксис

taylor(f)

taylor (f, n)

taylor (f, a)

taylor (f, x)

Ø  Функция taylor(f) возвращает шесть первых членов ряда Маклорена (ряд Тейлора в точке x=0). В любом разложении можно задавать число членов ряда n, точку a, относительно которой ищется разложение, и переменную x, по которой ищется разложение, например taylor (f, n, x, a).

Ø  Функция taylor (f, a) возвращает ряд Тейлора в окрестности точки a.

Ø  Функция taylor (f, x) возвращает ряд Тейлора для переменной x, определяемой функцией findsym.

Примеры

>> x=sym('x');

>> F=sin(x);

>> taylor(F)

ans =

x‑1/6*x^3+1/120*x^5

>> taylor (F, 10)

ans =

x‑1/6*x^3+1/120*x^5–1/5040*x^7+1/362880*x^9

>> taylor (exp(x), 1)

ans =

>> taylor (cos(x), – pi/2,6)

ans =

x+1/2*pi‑1/6*(x+1/2*pi)^3+1/120*(x+1/2*pi)^5

Функция yacobian – вычисляет матрицу Якоби

Синтаксис

yacobian (f, v)

Ø  Функция yacobian (f, v) возвращает матрицу Якоби для скаляра или вектора f по вектору переменных v. Каждый (i, j) – й элемент матрицы представляет собой частную производную ∂fi/∂vj.

Примеры

>> v=[x, y, z];

>> J=jacobian (F, v)

J =

[2*x, 0, 0]

[1, 1/z, – y/z^2]

[z, 0, x]

>> v=[x; y];

>> J=jacobian (F, v)

J =

[2*x, 0]

[1, 1/z]

[z, 0]

>> J=jacobian (x*y, v)

J =

[y, x]

Функция symsum – вычисляет аналитическое значение суммы ряда

Синтаксис

symsum(S)

symsum (S, v)

symsum (S, a, b)

Ø  Функция symsum(S) возвращает символьное значение суммы бесконечного ряда по переменной, найденной автоматически с помощью функции findsym.

Ø  Функция symsum (S, v) возвращает сумму бесконечного ряда по переменной v.

Ø  Функция symsum (S, a, b) возвращает конечную сумму ряда в пределах номеров слагаемых от a до b.

Примеры

>> x=sym('x');

>> symsum (x^2)

ans =

1/3*x^3–1/2*x^2+1/6*x

>> symsum (1/x^4)

ans =

-1/6*Psi (3, x)

>> symsum (1/x^4,1,5)

ans =

14001361/12960000

>> symsum([x, x^2, x^3], 1,5)

ans =

[15, 55, 225]

Функция solve – решает системы алгебраических уравнений и одиночных уравнений

Синтаксис

solve (expr1, expr2,…, exprN, var1, var2,…, varN)

solve (expr1, expr2,…, exprN)

Ø  Функция solve (expr1, expr2,…, exprN, var1, var2,…, varN) возвращает значения переменных varI, при которых соблюдаются равенства, заданные выражениями exprI. Если в выражениях не используются знаки равенства, то полагается exprI=0.

Ø  Функция solve (expr1, expr2,…, exprN) аналогична предшествующей функции, но переменные, по которым ищется решение, определяются функцией fimdsym.

Примеры

>> syms x y;

>> solve (x^3–1, x)

ans =

[1]

[-1/2+1/2*i*3^(1/2)]

[-1/2–1/2*i*3^(1/2)]

>> solve (x^2‑x‑9, x)

ans =

[1/2+1/2*37^(1/2)]

[1/2–1/2*37^(1/2)]

>> syms a b c;

>> solve (a*x^2+b*x+c)

ans =

[1/2/a*(-b+(b^2–4*a*c)^(1/2))]

[1/2/a*(-b – (b^2–4*a*c)^(1/2))]

>> S=solve ('x+y=3', 'x*y^2=4', x, y)

S =

x: [3x1 sym]

y: [3x1 sym]

>> S.x

ans =

[4]

[1]

[1]

>> S.y

ans =

[-1]

[2]

[2]

>> solve ('sin(x)=0.5', x)

ans =

52359877559829887307710723054658

Функция dsolve – решает дифференциальные уравнения в форме Коши

Синтаксис

dsolve (‘eqn1’, ‘eqn2’,…)

Ø  Функция dsolve (‘eqn1’, ‘eqn2’,…) возвращает аналитическое решение системы дифференциальных уравнений с начальными условиями. Они задаются равенствами eqnI.

Страницы: 1, 2, 3

рефераты
Новости