рефераты рефераты
Главная страница > Курсовая работа: Решение задач с нормальными законами в системе "Статистика"  
Курсовая работа: Решение задач с нормальными законами в системе "Статистика"
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Решение задач с нормальными законами в системе "Статистика"

Необходимо ввести предположение, что все классы, среди которых должна проводиться дискриминация, имеют нормальное распределение с одной и той же ковариационной матрицей Σ.

В результате существенно упрощается выражение для дискриминантной функции.

Класс, к которому должна принадлежать точка х, можно определить на

основе неравенства

 (1.4)


Необходимо воспользоваться формулой (1.1) для случая, когда их ковариационные матрицы равны:, а ( есть вектор математических ожиданий класса i. Тогда (1.4) можно представить неравенством их квадратичных форм

 (1.5)

Если имеется два вектора Z и W, то скалярное произведение можно записать . В выражении (1.5) необходимо исключить справа и слева, поменять у всех членов суммы знаки. Теперь преобразовать

Аналогично проводятся преобразования по индексу i. Необходимо сократить правую и левую часть неравенства (1.5) на 2 и, используя запись квадратичных форм, получается

 (1.6)

Необходимо ввести обозначения в выражение (1.6):

Тогда выражение (1.6) примет вид


(1.7)

Следствие: проверяемая точка х относится к классу i, для которого линейная функция

 (1.8)

Преимущество метода линейной дискриминации Фишера заключается в линейности дискриминантной функции (1.8) и надежности оценок ковариационных матриц классов.

Пример

Имеются два класса с параметрами и . По выборкам из этих совокупностей объемом n1 n2 получены оценки  и . Первоначально проверяется гипотеза о том, что ковариационные матрицы  равны. В случае если оценки  и статистически неразличимы, то принимается, что  и строится общая оценка , основанная на суммарной выборке объемом n1+n2 , после чего строится линейная дискриминантная функция Фишера (1.8).


2.  ДИСКРИМИНАНТНЫЙ АНАЛИЗ ПРИ НОРМАЛЬНОМ ЗАКОНЕ РАСПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЕЙ

Имеются две генеральные совокупности Х и У, имеющие трехмерный нормальный закон распределения с неизвестными, но равными ковариационными матрицами.

Алгоритм выполнения дискриминантного анализа включает основные этапы:

1. Исходные данные представляются либо в табличной форме в виде q подмножеств (обучающих выборок) Mk и подмножества М0 объектов подлежащих дискриминации, либо сразу в виде матриц X(1), X(2), ..., X(q), размером (nk×p):

Таблица 1

Номер подмножества Mk (k = 1, 2, ..., q)

Номер объекта, i

(i = 1, 2, ..., nk)

Свойства (показатель), j (j = 1, 2, ..., p)

x1

x2

x0

Подмножество M1 (k = 1)

1

2

n1

Подмножество M2 (k = 2)

1

2

n2

Подмножество Mq (k = q)

1

2

nq

Подмножество M0, подлежащее дискриминации

1

2

m

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости