рефераты рефераты
Главная страница > Курсовая работа: Проектирование аналоговых устройств  
Курсовая работа: Проектирование аналоговых устройств
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Проектирование аналоговых устройств

         Требуемое значение напряжения источника питания Е для рассмотренных выше случаев равно:

,                                        (4.2)

где U   -   падение напряжения на R , U=IR .

         Напряжение источника питания не должно превышать U данного транзистора и должно соответствовать рекомендованному ряду:

Е=(5; 6; 6,3; 9; 10; 12; 12,6; 15; 20; 24; 27; 30; 36)B.

         Если в результате расчета Е не будет соответствовать значению из рекомендованного ряда, то путем вариации   в формуле (4.2) следует подогнать значение Е под ближайшее из рекомендованного ряда. Значение Е можно существенно снизить, если параллельно R включить дроссель с такой индуктивностью, чтобы X>(10...20)R(на , для ИУ ,  - длительность импульса). В этом случае U=0. Такая мера также позволяет повысить КПД каскада. Следует отметить, что применение дросселя не всегда технологически оправдано, особенно при исполнении УУ в виде ИМС.

         4.3  Расчет эквивалентных параметров транзистора

         При использовании транзисторов до (0,2...0,3) возможно использование упрощенных эквивалентных моделей транзисторов, параметры элементов эквивалентных схем которых легко определяются на основе справочных данных, приведенных, например, в [3].


         Эквивалентная схема биполярного транзистора приведена на рис.4.3.

         Параметры элементов определяются на основе справочных данных следующим образом:

         ¨ ,

где  - постоянная времени цепи внутренней обратной связи в транзисторе на ВЧ;

    ¨ ,

при  в миллиамперах  получается в омах;

         ¨ ,

где  - граничная частота усиления по току транзистора с ОЭ,  ;

         ¨ ,

где  - низкочастотное значение коэффициента передачи по току транзистора с ОЭ.

¨ Dr =(0,5…1,5) Ом;

         Таким образом, параметры эквивалентной схемы биполярного транзистора полностью определяются справочными данными  и режимом работы.

Следует учитывать известную зависимость  от напряжения коллектор -эмиттер :

.

По параметрам эквивалентной схемы БТ определим его низкочастотные значения входной проводимости g и крутизны :

 ,

.

         4.4 Расчет цепей питания и термостабилизации

        

Наиболее широкое распространение получила схема эмиттерной термостабилизации (см. рис.4.1). Проведем расчет этой схемы.

         Определим потенциал в точке  а :

 ,

где     -    напряжение база-эмиттер в рабочей точке, =(0,6...0,9)В (для кремниевых транзисторов).

         Зададимся током делителя, образованного резисторами R и R :

 ,

где          -        ток  базы  в рабочей точке,  .

         Определим номиналы резисторов  R, R и R :

 ,

,

 .

         Оценим результирующий уход тока покоя транзистора в заданномдиапазоне температуры окружающей среды. Определим приращение тока коллектора, вызванного тепловым смещением проходных характеристик:

 ,

где               -   приращение напряжения , равное:

|e|,

где          e   -    температурный коэффициент напряжения (ТКН),

 e-3мВ/град,  Т - разность между температурой коллекторного перехода Т и справочным значением этой температуры Т(обычно 25C):

,

,

где  Ри  R соответственно, мощность, рассеиваемая на коллекторном переходе в статическом режиме, и тепловое сопротивление “переход-среда”:

,

.

         Ориентировочное значение теплового сопротивления зависит от конструкции корпуса транзистора и обычно для транзисторов малой и средней мощности лежит в следующих пределах:

.

Меньшее тепловое сопротивление имеют керамические и металлические корпуса, большее - пластмассовые.

         Определяем приращение тока коллектора , вызванного изменением обратного (неуправляемого) тока коллектора:

,

где приращение обратного тока   равно:

,

где a - коэффициент показателя, для кремниевых транзисторов a=0,13.

         Следует заметить, что значение , приводимое в справочной литературе, особенно для транзисторов средней и большой мощности, представляет собой сумму тепловой составляющей и поверхностного тока утечки, последний может быть на два порядка больше тепловой составляющей, и он практически не зависит от температуры. Следовательно, при определении   следует пользоваться приводимыми в справочниках температурными зависимостями   либо уменьшать справочное значение  примерно на два порядка для кремниевых транзисторов (обычно  для кремниевых транзисторов составляет порядка , n=(1...9)).

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости