рефераты рефераты
Главная страница > Курсовая работа: Проектирование аналоговых устройств  
Курсовая работа: Проектирование аналоговых устройств
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Проектирование аналоговых устройств

где   М-результирующий коэффициент частотных искажений в области ВЧ, дБ;

  М  -        коэффициент частотных искажений   i-го каскада, дБ.

         Суммирование в выражении (3.2) производится (n+1) раз из-за необходимости учета влияния входной цепи, образованной  R,R и С (см.рис.3.1).

         Предварительно распределить искажения можно равномерно, при этом

         В последующем, исходя из результатов промежуточных расчетов,  возможно перераспределение искажений между каскадами.

         Частотные искажения УУ в области нижних частот (НЧ) определяются следующим соотношением:

,                                             (3.3)

где          М   -   результирующий коэффициент частотных искажений в области НЧ, дБ;

                  М   -   искажения, приходящиеся на i-й элемент, дБ;

                  N       -   количество элементов, вносящих искажения на НЧ.

         Количество элементов, вносящих искажения на НЧ (обычно это блокировочные в цепях эмиттеров и разделительные межкаскадные конденсаторы), становится известным после окончательного выбора топологии электрической схемы УУ, поэтому распределение искажений в области НЧ проводят на этапе расчета номиналов этих элементов. Из (3.3) следует, что при равномерном распределении низкочастотных искажений, их доля (в децибелах) на каждый из N элементов определится из соотношения:

         На практике, с целью выравнивания номиналов конденсаторов, на разделительные конденсаторы распределяют больше искажений, чем на блокировочные.

         Для многокаскадных ИУ результирующее время установления фронта равно:

,                             (3.4)

где              -   время установления для входной цепи;

                     -   время установления для i-го каскада, i=1,...,n;

                    n    -   число каскадов усилителя.

         Если результирующее установление фронта импульса для ИУ напрямую не задано, то оно может быть определено из следующего соотношения:

,

где                 - заданные искажения фронта входного сигнала;

                     - заданные искажения фронта выходного сигнала.

         Результирующая неравномерность вершины прямоугольного импульса равна сумме неравномерностей, образующихся за счет разделительных и блокировочных цепей:

 ,

где                 -    неравномерность вершины за счет i-й цепи;

                    N     -    число цепей.

         Искажения фронта импульса связаны с частотными искажениями  в области ВЧ, а искажения вершины импульса - с частотными искажениями в области НЧ [1,2]. Поэтому все указанные выше рекомендации по распределению частотных искажений для ШУ остаются в силе и для ИУ.

         В связи с возможным разбросом номиналов элементов и параметров транзисторов необходимо обеспечить запас по основным характеристикам УУ в 1,2-1,5 раза.

4 РАСЧЕТ ОКОНЕЧНОГО КАСКАДА

         4.1 Выбор транзистора

         Выбор транзистора для оконечного каскада осуществляется с учетом следующих предельных параметров:

         ¨ граничной частоты усиления транзистора по току в схеме с ОЭ

   для  ШУ,

  для ИУ;

         ¨ предельно допустимого напряжения коллектор-эмиттер

 для ШУ,

 для ИУ;

         ¨ предельно допустимого тока коллектора (при согласованном выходе)  

          для ШУ,

       для ИУ.

         Если ИУ предназначен для усиления импульсного сигнала различной полярности (типа “меандра”) либо сигналов с малой скважностью (меньше 10), то при выборе транзистора оконечного каскада  следует ориентироваться на соотношения для ШУ.

         Тип проводимости транзистора может быть любой для ШУ и ИУ сигналов малой скважности. Если ИУ предназначен для усиления однополярного сигнала, то из энергетических соображений рекомендуется брать транзистор проводимости p-n-p для выходного сигнала положительной полярности, n-p-n  -  для отрицательной.

         Обычно при U=(1...5)В  и R=(50...150)Ом для выходного каскада берутся кремниевые ВЧ и СВЧ транзисторы средней мощности типа КТ610 и т.п.

         4.2  Расчет требуемого режима транзистора

        

         Существуют графические методы расчета оконечного каскада, основанные на построении динамических характеристик (ДХ) [1,2]. Однако для построения ДХ необходимы статические характеристики транзисторов, которые в современных справочниках по транзисторам  практически не приводятся.

         Рассмотрим методику нахождения координат рабочей точки транзистора без использования его статических характеристик.

         Типичная схема оконечного каскада приведена на рис.4.1.

         Задаемся сопротивлением в цепи коллектора:

R=(1...2) R,  если требуется согласование выхода УУ с нагрузкой,

R=(2...3)R- в остальных случаях (рекомендация только для низкоомной нагрузки, R=(50...150)Ом).

         Задаемся падением напряжения на R(либо на R+ R, если R присутствует в схеме):

 .

         Определяем эквивалентное сопротивление нагрузки:

 .                                             (4.1)

        


Определяем требуемое значение тока покоя коллектора в рабочей точке (плюс 10%-й запас с учетом возможной его термонестабильности) для ШУ и ИУ сигналов различной полярности (рис.4.2,а):

 .


         Для ИУ однополярных сигналов с большой скважностью (Q10), рис.4.2,б:

 .

         Для ИУ однополярных сигналов с малой скважностью (Q<10), (рис.4.2.в):

 .

         Напряжение коллектор-эмиттер в рабочей точке для ШУ, ИУ сигналов различной полярности и ИУ однополярных сигналов с большой скважностью (см. рис.4.2,а,б):

 ,

где U   -   напряжение начального нелинейного участка выходных статических характеристик транзистора, U=(1...2)В.

         Напряжение коллектор-эмиттер в рабочей точке для ИУ однополярных сигналов с малой скважностью (см. рис. 4.2,в):

 .

Рекомендуется учесть для U необходимый запас на термонестабильность (обычно не более 10...15%).

         Постоянная мощность, рассеиваемая на коллекторе,   не должна превышать предельного значения, взятого из справочных данных на транзистор.

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости