рефераты рефераты
Главная страница > Курсовая работа: Критерій відношення правдоподібності для великих вибірок  
Курсовая работа: Критерій відношення правдоподібності для великих вибірок
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Курсовая работа: Критерій відношення правдоподібності для великих вибірок

де Звідси випливає, що

Оскільки слушна оцінка для , а другі похідні функції правдоподібності, за припущенням, неперервні по , то справедливо:


На основі закону великих чисел при  величина

збігається за ймовірністю( за розподілом ) до середнього значення

Таким чином, матриця граничних значень коефіцієнтів квадратичної форми у (3) співпадає з інформаційною матрицею . Звідси слідує, що випадковий вектор  має в границі такий же розподіл, як і нормальний  випадковий вектор  Таким чином, права частина (3) має в границі такий розподіл, як і квадратична форма . Тоді . Звідки і випливає співвідношення (2). Теорему доведено.

Розглянемо важливий приклад застосування викладених результатів до поліноміального розподілу

Приклад( метод відношення правдоподібності для поліноміального розподілу). Нехай проводяться незалежні випробування, в кожному з яких реалізується один із  можливих наслідків , тобто спостерігається випадкова величина , що приймає значення (, якщо наступила подія ). Позначимо через вектор ймовірностей цих подій( ) і через  вектор частот реалізацій відповідних наслідків в  випробуваннях( ). Як відомо, розподіл вектора  має поліноміальний розподіл . Припустимо тепер, що ймовірності подій  невідомі і потрібно перевірити гіпотезу  де заданий вектор, що задовольняє умовам: . Альтернативна гіпотеза має вигляд .

Тут роль параметра  відіграє вектор , але оскільки на значення параметрів накладена вимога , то бажано позбутись цього обмеження, виключивши, наприклад,. Таким чином, надалі покладаємо  і .

Оцінками максимальної правдоподібності для параметрів  є відносні частоти реалізацій відповідних подій, тобто , тому в даному випадку статистика відношення правдоподібності має вигляд:

Звідси

Якщо справедлива гіпотеза , то в границі при  ця статистика має розподіл , тому при заданому рівні значущості  критичну границю вибирають рівною . Тоді критична множина матиме вигляд: , причому критична точка  визначається із співвідношення:


Тому, якщо

то гіпотеза  відхиляється( тобто вона не узгоджується із статистичними даними проведеного експерименту, і ймовірність того, що ми відхиляємо правильну гіпотезу не перевищує значення ), у протилежному випадку – приймається.

Приклад 2(метод відношення правдоподібності для перевірки значень параметрів нормального розподілу)

Розглядається вибірка з нормального розподілу. Потрібно перевірити гіпотезу про значення параметрів нормального розподілу за двосторонньої альтернативи. А саме, , альтернативна гіпотеза. Обчислимо статистику критерію. Для цього знайдемо функцію правдоподібності для нормального розподілу  . Тоді

.

Звідси,


Тут,. Тому статистика критерію матиме вигляд:

.

У наступному розділі ми більш детально розглянемо застосування критерію відношення правдоподібності для великих вибірок до перевірки статистичних гіпотез.

3. Приклади застосування критерію відношення правдоподібності для великих вибірок

Розглянемо декілька прикладів на застосування розглянутого критерію.

Приклад 1. Кількість бракованих деталей у партії не повинна перевищувати . У результаті контролю 100 деталей із цієї партії виявлено 6 бракованих. Чи можна вважати, що відсоток браку рівний  при ?

Розв’язання. Для розв’язку задачі застосуємо критерій відношення правдоподібності для великих вибірок. Нехай ймовірність браку деталі, ймовірність того, що деталь справна,.  - припущення про параметр розподілу. Отже, перевіримо просту гіпотезу , тоді альтернативна гіпотеза  тут У нашому випадку , тоді статистика критерію


Для заданого рівня значущості  знаходимо критичну точку ( див. Додаток А). Отже, отримали, що при даній реалізації вибірки статистика критерію отримала значення , яке менше критичного значення , тобто гіпотеза  приймається, а тому відсоток браку можна вважати таким, що рівний .

Приклад 2. Гральний кубик підкинули 600 разів, при цьому шестірка випала 75 разів, п’ятірка – 118, четвірка – 124, трійка – 108, двійка – 92 і одиничка - 83. Чи можна вважати, що кубик симетричний і однорідний? Прийняти

Розв’язання. У цій задачі невідомий параметр, причому ,  Тоді . Гіпотеза , альтернатива . Знайдемо значення статистики критерію

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости