рефераты рефераты
Главная страница > Контрольная работа: История вычислительной техники  
Контрольная работа: История вычислительной техники
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Контрольная работа: История вычислительной техники

Числовой

Функция задается в виде десятичных (или восьмеричных, или шестнадцатиричных) эквивалентов номеров тех наборов аргументов, на которых функция принимает значение 1.

Условие, что функция f (x1, x2, x3) = 1 на наборах 1,3,5,6,7 записывается f (1, 3, 5, 6, 7) = 1.

Аналогичным образом булева функция может быть задана по нулевым значениям.

При нумерации наборов переменным x1, x2, x3 ставится в соответствие веса 22, 21, 20, т.е. 6 набору соответствует двоичный эквивалент 110, а 1 набору – 001.

Табличный

Функция задается в виде таблицы истинности (соответствия), которая содержит 2n строк (по числу наборов аргументов), n столбцов по числу переменных и один столбец значений функции. В такой таблице каждому набору аргументов соответствует значение функции.

Аналитический

Функция задается в виде алгебраического выражения, получаемого путем применения каких-либо логических операций к переменным алгебры логики. применяя операции конъюнкции и дизъюнкции можно задать функцию выражением f (x1, x2, x3) = x1x2 v x3.

Координатный

При этом способе задания таблица истинности функции представляется в виде координатной карты состояний, которая часто называется картой Карно. Такая карта содержит 2n клеток по числу наборов всевозможных значений n переменных функции. Переменные функции разбиваются на две группы так, что одна группа определяет координаты столбца, а другая – координаты строки.

При такoм способе построения клетка определяется координатами переменных, соответствующих определенному двоичному набору.

Внутри клетки карты Карно ставится значение функции на данном наборе.

Переменные в строках и столбцах располагаются так, чтобы соседние клетки карты Карно различались только в одном разряде переменных, т.е. были соседними.

Такой способ представления очень удобен для наглядности при минимизации булевых функций.

Диаграмный

Является способом представления функционирования схемы, реализующей булеву функцию, во времени. Изображается в виде системы графиков, у которых ось Х соответствует автоматному времени (моментам времени), а ось Y соответствует напряжению дискретных уровней сигналов «логический 0» (0,4 в) и «логическая 1» (2,4 в).

Графический

Функция задается в виде n-мерного единичного куба, вершинам которого соответствуют наборы значений аргументов и приписаны значения функции на этих наборах. Куб назван единичным, так как каждое ребро соединяет вершины, наборы которых различаются только по одной переменной, т.е. являются соседними.

Такой способ задания булевых функций иногда называют геометрическим, но чаще всего кубическим. Кубическое представление наиболее пригодно для машинных методов анализа булевых функций, так как позволяет компактно представлять булевы функции от большого количества переменных.


Страницы: 1, 2, 3

рефераты
Новости