рефераты рефераты
Главная страница > Контрольная работа: История вычислительной техники  
Контрольная работа: История вычислительной техники
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Контрольная работа: История вычислительной техники

3.  Принципы фон Неймана архитектуры построения ЭВМ

·  наличие единого вычислительного устройства, включающего процессор, средства передачи информации и память;

·  линейная структура адресации памяти, состоящей из слов фиксированной длины;

·  двоичная система исчисления;

·  централизованное последовательное управление;

·  хранимая программа;

·  низкий уровень машинного языка;

·  наличие команд условной и безусловной передачи управления;

·  АЛУ с представлением чисел в форме с плавающей точкой.

4.  Системы счисления. Функции, разновидности, перевод целых и дробных чисел из одной системы счисления в другую

Cистема счисления – способ представления любого числа с помощью некоторого алфавита символов, называемых цифрами.

Позиционная система счисления – количественное значение каждой цифры зависит от ее места (позиции) в числе.

Непозиционная система счисления – цифры не меняют своего количественного значения при изменении их расположения в числе.

Целое число с основанием P1 переводится в систему счисления с основанием P2 путем последовательного деления числа Ap1 на основание P2, записанного в виде числа с основанием P1, до получения остатка.

Полученное частное следует вновь делить на основание P2 и этот процесс надо повторять до тех пор, пока частное не станет меньше делителя.

Полученные остатки от деления и последнее частное записываются в порядке, обратном полученному при делении.

Сформированное число и будет являться числом с основанием P2

Дробное число с основанием P1 переводится в систему счисления с основанием P2 путем последовательного умножения Ap1 на основание P2 записанное в виде числа с основанием P1.

При каждом умножении целая часть произведения берется в виде очередной цифры соответствующего разряда, а оставшаяся дробная часть принимается за новое множимое.

Число умножений определяет разрядность полученного результата, представляющего число Ap1, в системе счисления P2


5.  Представление информации в ЭВМ. Числовая, текстовая, графическая, видео и звуковая информация

Представление числовой информации.

В ЭВМ используются три вида чисел:

-  с фиксированной точкой,

-  с плавающей точкой,

-  двоично-десятичное представление.

У чисел с фиксированной точкой – строго определенное место точки – или перед первой значащей цифрой числа (дробное, число по модулю меньше единицы, например 0.101), или после последней значащей цифрой числа (целое число, например 101.0).

Числа с плавающей точкой представляются в виде мантиссы тa и порядка рa, например число А10=373 можно представить в виде 0.373 • 103, при этом тa= 0.373, рa= 3.

Порядок числа ра определяет положение точки в двоичном числе. Например, А2 = (100; 0.101101) – обозначает число А2= 1011.01

Двоично-десятичная форма представления двоичных чисел используется при необходимости ввода, вывода и обработки большого количества десятичных данных. Для перевода из десятичной системы в двоичную и наоборот требуется много дополнительных команд.

В двоично-десятичной системе каждая цифра десятичного числа представляется двоичной тетрадой. Например, А10=3759, А2-10= 0011 0111 0101 1001.

Значение знака числа отмечается кодом, отличным
от кодов цифр. Например «+» имеет значение тетрады «1100», а «–» – «1101».

Представление символьной информации

При вводе информации с клавиатуры кодирование происходит при нажатии клавиши, на которой изображен требуемый символ, при этом в клавиатуре вырабатывается так называемый scan-код, представляющий собой двоичное число, равное порядковому номеру клавиши.

Опознание символа и присвоение ему внутреннего кода ЭВМ производятся специальной программой по специальным таблицам: КОИ-7, ASCII, Win-1251, ISO, Unicode.

В системе ASCII закреплены две таблицы кодирования – базовая и расширенная. Базовая таблица закрепляет значения кодов от 0 до 127, а расширенная относится к символам с номерами от 128 до 255.

Первые 32 кода базовой таблицы содержат управляющие коды.

Начиная с кода 32 по код 127 размещены коды символов английского алфавита, знаков препинания, цифр, арифметических действий и некоторых вспомогательных символов.

Вторая половина таблицы содержит национальные шрифты, символы псевдографики, из которых могут быть построены таблицы, специальные математические знаки.

В СССР действовала системы кодирования КОИ – 7,8 (код обмена информацией, семи-, восьмизначный).

В системах Windows используется кодировка символов русского языка Windows-1251.

Система, основанная на 16-разрядном кодировании символов, получила название универсальной – UNICODE. Она позволяет обеспечить уникальные коды для 65 536 различных символов.

Представление видеоинформации

Может быть статической или динамической.

Статическая – текст, рисунки, графики, чертежи, таблицы. Рисунки – плоские – двухмерные и объемные – трехмерные.

По способу формирования видеоизображения бывают растровые и векторные.

Растровая графика (а) задается массивом точек, векторная (б) – отрезками линий (с координатами начала, углом наклона и длиной).


6.  Арифметические основы ЭВМ. Машинные коды, операции с ними

Все современные ЭВМ имеют достаточно развитую систему команд, включающую десятки и сотни машинных операций. Но выполнение любой операции основано на использовании простейших микроопераций типа сложения и сдвиг. Это позволяет иметь единое арифметико-логическое устройство для выполнения любых операций, связанных с обработкой информации.

Машинные коды

Под знак чисел отводится специальный знаковый разряд. Знак «+» кодируется двоичным нулем, а знак «–» – единицей.

В ЭВМ все операции выполняются над числами, представленными специальными машинными кодами. Их использование позволяет обрабатывать знаковые разряды чисел так же, как и значащие разряды, а также заменять операцию вычитания операцией сложения.

Различают прямой код (П), обратный код (ОК) и дополнительный код (ДК) двоичных чисел.

Прямой код двоичного числа образуется из абсолютного значения этого числа и кода знака (нуль или единица) перед его старшим числовым разрядом.

Пример 1. А10=+10 А2 =+1010 [A2]п= 0|1010

B10=-15 B2 = -1111 [B2]п= 1|1111

Вертикальной линией здесь отмечена условная граница, отделяющая знаковый разряд от значащих.

Обратный код двоичного числа образуется по следующему правилу.

Обратный код положительных чисел совпадает с их прямым кодом.

Обратный код отрицательного числа содержит единицу в знаковом разряде числа, а значащие разряды числа заменяются на инверсные, т.е. нули заменяются единицами, а единицы – нулями.

Дополнительный код положительных чисел совпадает с их прямым кодом. Дополнительный код отрицательного числа представляет собой результат суммирования обратного кода числа с единицей младшего разряда (2° – для целых чисел, 2-к – для дробных).

Сложение (вычитание). Операция вычитания приводится к операции сложения путем преобразования чисел в обратный или дополнительный код. Пусть числа А>=О и В>=О, тогда операция алгебраического сложения выполняется в соответствии с табл.

Умножение. Умножение двоичных чисел наиболее просто реализуется в прямом коде. Рассмотрим, каким образом оно приводится к операциям сложения и сдвигам.

Операция деления, как и в десятичной арифметике, является обратной операции умножения. Покажем, что и эта операция приводится к последовательности операций сложения и сдвига.

7.  Алгебра логики. Булевы функции, способы задания

Алгебра логики – устанавливает основные законы формирования и преобразования логических функций. Она позволяет представить любую сложную функцию в виде композиции простейших функций.

Существует несколько синонимов по отношению к функциям алгебры логики:

•  функции алгебры логики (ФАЛ);

•  переключательные функции;

•  булевские функции;

•  двоичные функции.

Вся информация в ЭВМ представляется в двоичной системе счисления. Поставим в соответствие входным сигналам отдельных устройств ЭВМ соответствующие значения хi, (i=1, n), а выходным сигналам – значения функций уj (j=1, m)

Зависимости

yj =f(x1, x1,…..xn),

где хi - i-й вход; n число входов; уj j – й выход; m – число выходов в устройстве, описывают алгоритм работы любого устройства ЭВМ.

Каждая такая зависимость yj, является «булевой функцией» (функцией алгебры логики) – число возможных состояний её и каждой её независимой переменной равно двум, а её аргументы определены на множестве {0,1}.

Способы представления ФАЛ

Словесный

При этом способе словесное описание однозначно определяет все случаи, при которых функция принимает значения 0 или 1. Например, многовходовая функция ИЛИ может иметь такое словесное описание: функция принимает значение 1, если хотя бы один из аргументов принимает значение 1, иначе – 0.

Страницы: 1, 2, 3

рефераты
Новости