рефераты рефераты
Главная страница > Дипломная работа: Алгоритм компактного хранения и решения СЛАУ высокого порядка  
Дипломная работа: Алгоритм компактного хранения и решения СЛАУ высокого порядка
Главная страница
Банковское дело
Безопасность жизнедеятельности
Биология
Биржевое дело
Ботаника и сельское хоз-во
Бухгалтерский учет и аудит
География экономическая география
Геодезия
Геология
Госслужба
Гражданский процесс
Гражданское право
Иностранные языки лингвистика
Искусство
Историческая личность
История
История государства и права
История отечественного государства и права
История политичиских учений
История техники
История экономических учений
Биографии
Биология и химия
Издательское дело и полиграфия
Исторические личности
Краткое содержание произведений
Новейшая история политология
Остальные рефераты
Промышленность производство
психология педагогика
Коммуникации связь цифровые приборы и радиоэлектроника
Краеведение и этнография
Кулинария и продукты питания
Культура и искусство
Литература
Маркетинг реклама и торговля
Математика
Медицина
Реклама
Физика
Финансы
Химия
Экономическая теория
Юриспруденция
Юридическая наука
Компьютерные науки
Финансовые науки
Управленческие науки
Информатика программирование
Экономика
Архитектура
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
География
Кредитование
Инвестиции
Информатика
Кибернетика
Косметология
Наука и техника
Маркетинг
Культура и искусство
Менеджмент
Металлургия
Налогообложение
Предпринимательство
Радиоэлектроника
Страхование
Строительство
Схемотехника
Таможенная система
Сочинения по литературе и русскому языку
Теория организация
Теплотехника
Туризм
Управление
Форма поиска
Авторизация




 
Статистика
рефераты
Последние новости

Дипломная работа: Алгоритм компактного хранения и решения СЛАУ высокого порядка

,

Уравнение (7) можно записать в следующем виде:

CBx=b.          (9)

Произведение Bx матрицы B на вектор-столбец x является вектором-столбцом, который обозначим через y:

Bx=y.        (10)

Тогда уравнение (9) перепишем  в виде:

Cy=b.     (11)

Здесь элементы сij известны, так как матрица А системы (7) считается уже разложенной на произведение двух треугольных матриц С и В.

Перемножив матрицы в левой части равенства (11), получаем систему уравнений из которой получаем следующие формулы для определения неизвестных:

неизвестные yi удобно вычислять вместе с элементами bij.

После того как все yi определены по формулам (12), подставляем их в уравнение(10).

Так как коэффициенты bij определены (8), то значения неизвестных, начиная с последнего, вычисляем по следующим формулам:

К прямым методам, использующим свойство разреженности А, можно отнести: алгоритм минимальной степени, алгоритм минимального дефицита, древовидное блочное разбиение для асимметричного разложения, методы вложенных или параллельных сечений и др.

Метод Гаусса.

Пусть дана система

Ax = b

где А – матрица размерности m x m.

В предположении, что , первое уравнение системы

,

делим на коэффициент , в результате получаем уравнение

Затем из каждого из остальных уравнений вычитается первое уравнение, умноженное на соответствующий коэффициент . В результате эти уравнения преобразуются к виду

первое неизвестное оказалось исключенным из всех уравнений, кроме первого. Далее в предположении, что , делим второе уравнение на коэффициент  и исключаем неизвестное из всех уравнений, начиная со второго и т.д. В результате последовательного исключения неизвестных система уравнений преобразуется в систему уравнений с треугольной матрицей

Совокупность проведенных вычислений называется прямым ходом метода Гаусса.

Из -го уравнения системы (2)  определяем , из ()-го уравнения определяем  и т.д. до . Совокупность таких вычислений называют обратным ходом метода Гаусса.

Реализация прямого метода Гаусса требует  арифметических операций, а обратного -  арифметических операций.

1.2. Итерационные методы решения СЛАУ

Метод итераций (метод последовательных приближений).

Приближенные методы решения систем линейных уравнений позволяют получать значения корней системы с заданной точностью в виде предела последовательности некоторых векторов. Процесс построения такой последовательности называется итерационным (повторяющимся).

Эффективность применения приближенных методов зависят от выбора начального вектора и быстроты сходимости процесса.

Рассмотрим метод итераций (метод  последовательных приближений). Пусть дана система n линейных уравнений с n неизвестными:

Ах=b,    (14)

Предполагая, что диагональные элементы aii  0 (i = 2, ..., n), выразим xi через первое уравнение систем x2 - через второе уравнение и т. д. В результате получим систему, эквивалентную системе (14):

Обозначим ; , где i == 1, 2, ...,n; j == 1,2,..., n. Тогда система (15) запишется таким образом в матричной форме

Решим систему (16) методом последовательных приближений. За нулевое приближение примем столбец свободных членов. Любое (k+1)-е приближение вычисляют по формуле

Если последовательность приближений x(0),...,x(k) имеет предел , то этот предел является решением системы (15), поскольку в силу свойства предела , т.е.  [4,6].

Метод Зейделя.

Метод Зейделя представляет собой модификацию метода последовательных приближений. В методе Зейделя при вычислении (k+1)-го приближения неизвестного xi (i>1) учитываются уже найденные ранее (k+1)-е приближения неизвестных xi-1.

Пусть дана линейная система, приведенная к нормальному виду:

    (17)

Выбираем произвольно начальные приближения неизвестных и подставляем в первое уравнение системы (17). Полученное первое приближение подставляем во второе уравнение системы и так далее до последнего уравнения. Аналогично строим вторые, третьи и т.д. итерации.

Таким образом, предполагая, что k-е приближения известны, методом Зейделя строим (k+1)-е приближение по следующим формулам:

где k=0,1,...,n

Метод Ланцоша.

Для решения СЛАУ высокого порядка (1), матрица, коэффициентов которой хранится в компактном  нижеописанном виде, наиболее удобным итерационным методом является метод Ланцоша [4], схема которого имеет вид:

      (18)

где

Преимуществом данного метода является его высокая скорость сходимости к точному решению. Кроме того, доказано, что он обладает свойством «квадратичного окончания», т.е. для положительно определенной матрицы можно гарантировано получить точное решение при количестве итераций . Размер требуемой памяти на каждой итерации не изменяется, т.к. не требует преобразование матрицы . В качестве критерия остановки данного итерационного процесса обычно используют соотношение

,           (19)

где - заданная точность. В качестве другого критерия сходимости иногда удобнее использовать среднеквадратичную разность между решениями, полученными на соседних итерациях:

            (20)

Среднеквадратичную разность необходимо контролировать при выполнении каждых k наперед заданных итераций.

Отдельно следует рассмотреть проблему выбора начального приближения . Доказывается, что при положительно определенной матрице , итерационный процесс (18) всегда сходится при любом выборе начального приближения. При решении контактных задач, когда для уточнения граничных условий в зоне предполагаемого контакта требуется большое количество решений СЛАУ вида (1), в качестве начального приближения для первого расчета используется правая часть системы (1), а для каждого последующего пересчета - решение, полученное на предыдущем. Такая схема позволяет значительно сократить количество итераций, необходимых для достижения заданной точности (19) или (20) [10,11].

 2 МЕТОДЫ КОМПАКТНОГО ХРАНЕНИЯ МАТРИЦЫ ЖЕСТКОСТИ

Матрица жесткости, получающаяся при применении МКЭ, обладает симметричной структурой, что позволяет в общем случае хранить только верхнюю треугольную часть матрицы. Однако для задач с большим количеством неизвестных это так же приводит к проблеме нехватки памяти. Предлагаемый в данной работе метод, позволяет хранить только ненулевые члены матрицы жесткости. Суть его заключается в следующем.

Первоначально, с целью выявления связей каждого узла с другими, производится анализ структуры дискретизации области на КЭ. Например, для КЭ - сетки, изображенной на рис. 1, соответствующая структура связей будет иметь вид:

№ узла 1 2 3 4 5 6 7
Связи 1, 2, 5, 6, 7 1, 2, 3, 6 2, 3, 4, 6 3, 4, 5, 6, 7 1, 4, 5, 7 1, 2, 3, 4, 6, 7 1, 4, 5, 6, 7


Тогда, для хранения матрицы жесткости необходимо построчно запоминать информацию о коэффициентах, соответствующих  узлам, с которыми связан данный узел.  На рис. 2 приведены   матрица жесткости и ее компактное представление для сетки изображенной на рис 1 [9].

Страницы: 1, 2, 3, 4, 5, 6, 7

рефераты
Новости